- Machine Learning for Cybersecurity Cookbook
- Emmanuel Tsukerman
- 112字
- 2021-06-24 12:28:58
How to do it...
In the following steps, we will demonstrate how to instantiate, train, and test an XGBoost classifier:
- Start by reading in the data:
import pandas as pd
df = pd.read_csv("file_pe_headers.csv", sep=",")
y = df["Malware"]
X = df.drop(["Name", "Malware"], axis=1).to_numpy()
- Next, train-test-split a dataset:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
- Create one instance of an XGBoost model and train it on the training set:
from xgboost import XGBClassifier
XGB_model_instance = XGBClassifier()
XGB_model_instance.fit(X_train, y_train)
- Finally, assess its performance on the testing set:
from sklearn.metrics import accuracy_score
y_test_pred = XGB_model_instance.predict(X_test)
accuracy = accuracy_score(y_test, y_test_pred)
print("Accuracy: %.2f%%" % (accuracy * 100))
The following screenshot shows the output:

推薦閱讀
- 自動控制工程設計入門
- 大數據專業英語
- Mastering VMware vSphere 6.5
- STM32G4入門與電機控制實戰:基于X-CUBE-MCSDK的無刷直流電機與永磁同步電機控制實現
- 自主研拋機器人技術
- 運動控制器與交流伺服系統的調試和應用
- 變頻器、軟啟動器及PLC實用技術260問
- 基于32位ColdFire構建嵌入式系統
- 網絡安全與防護
- 基于Xilinx ISE的FPAG/CPLD設計與應用
- TensorFlow Reinforcement Learning Quick Start Guide
- MPC5554/5553微處理器揭秘
- Effective Business Intelligence with QuickSight
- 網頁設計與制作
- Eclipse RCP應用系統開發方法與實戰