官术网_书友最值得收藏!

How to do it...

In the following steps, we will demonstrate how to instantiate, train, and test an XGBoost classifier:

  1. Start by reading in the data:
import pandas as pd

df = pd.read_csv("file_pe_headers.csv", sep=",")
y = df["Malware"]
X = df.drop(["Name", "Malware"], axis=1).to_numpy()
  1. Next, train-test-split a dataset:
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
  1. Create one instance of an XGBoost model and train it on the training set:
from xgboost import XGBClassifier

XGB_model_instance = XGBClassifier()
XGB_model_instance.fit(X_train, y_train)
  1. Finally, assess its performance on the testing set:
from sklearn.metrics import accuracy_score

y_test_pred = XGB_model_instance.predict(X_test)
accuracy = accuracy_score(y_test, y_test_pred)
print("Accuracy: %.2f%%" % (accuracy * 100))

The following screenshot shows the output:

主站蜘蛛池模板: 东安县| 嵩明县| 松滋市| 凌源市| 翼城县| 东辽县| 曲沃县| 皋兰县| 邹城市| 东乡县| 延津县| 沿河| 达日县| 梁平县| 晋城| 宁南县| 沈丘县| 滨海县| 玛纳斯县| 武穴市| 格尔木市| 右玉县| 邓州市| 兴海县| 南京市| 巴塘县| 循化| 贵港市| 凌海市| 吉安市| 石城县| 广宁县| 阿坝县| 运城市| 金湖县| 海阳市| 贵港市| 渑池县| 阿拉尔市| 常山县| 长岛县|