官术网_书友最值得收藏!

Data Transformation

One of the fundamental steps of Exploratory Data Analysis (EDA) is data wrangling. In this chapter, we will learn how to merge database-style dataframes, merging on the index, concatenating along an axis, combining data with overlap, reshaping with hierarchical indexing, and pivoting long to wide format. We will come to understand the work that must be completed before transferring our information for further examination, including, removing duplicates, replacing values, renaming axis indexes, discretization and binning, and detecting and filtering outliers. We will work on transforming data using a function, mapping, permutation and random sampling, and computing indicators/dummy variables. 

This chapter will cover the following topics:

Background

Merging database-style dataframes 

Transformation techniques

Benefits of data transformation

主站蜘蛛池模板: 盐城市| 鄂托克旗| 榕江县| 红安县| 上思县| 永胜县| 太白县| 平乡县| 庄河市| 晋州市| 囊谦县| 千阳县| 江永县| 方城县| 中山市| 安新县| 田林县| 涞源县| 虞城县| 会宁县| 岗巴县| 吉水县| 定边县| 威远县| 金坛市| 黔西县| 通州区| 金湖县| 大邑县| 抚宁县| 登封市| 改则县| 定襄县| 东乡县| 隆回县| 内江市| 阿坝县| 延川县| 屯昌县| 谢通门县| 阿合奇县|