官术网_书友最值得收藏!

Data Transformation

One of the fundamental steps of Exploratory Data Analysis (EDA) is data wrangling. In this chapter, we will learn how to merge database-style dataframes, merging on the index, concatenating along an axis, combining data with overlap, reshaping with hierarchical indexing, and pivoting long to wide format. We will come to understand the work that must be completed before transferring our information for further examination, including, removing duplicates, replacing values, renaming axis indexes, discretization and binning, and detecting and filtering outliers. We will work on transforming data using a function, mapping, permutation and random sampling, and computing indicators/dummy variables. 

This chapter will cover the following topics:

Background

Merging database-style dataframes 

Transformation techniques

Benefits of data transformation

主站蜘蛛池模板: 洛川县| 云南省| 贵港市| 齐河县| 蒙山县| 弥渡县| 兴仁县| 比如县| 梁平县| 青浦区| 兴文县| 河源市| 韶关市| 新泰市| 富锦市| 偏关县| 达日县| 东明县| 岢岚县| 虎林市| 阿瓦提县| 镇原县| 绍兴县| 阿克苏市| 诏安县| 资阳市| 襄樊市| 太保市| 于都县| 万山特区| 肥乡县| 南阳市| 都匀市| 皋兰县| 大埔县| 香港 | 石渠县| 同心县| 原平市| 临汾市| 吴堡县|