- Hands-On Exploratory Data Analysis with Python
- Suresh Kumar Mukhiya Usman Ahmed
- 120字
- 2021-06-24 16:44:58
Data Transformation
One of the fundamental steps of Exploratory Data Analysis (EDA) is data wrangling. In this chapter, we will learn how to merge database-style dataframes, merging on the index, concatenating along an axis, combining data with overlap, reshaping with hierarchical indexing, and pivoting long to wide format. We will come to understand the work that must be completed before transferring our information for further examination, including, removing duplicates, replacing values, renaming axis indexes, discretization and binning, and detecting and filtering outliers. We will work on transforming data using a function, mapping, permutation and random sampling, and computing indicators/dummy variables.
This chapter will cover the following topics:
Background
Merging database-style dataframes
Transformation techniques
Benefits of data transformation
- 造個小程序:與微信一起干件正經事兒
- Web交互界面設計與制作(微課版)
- FFmpeg入門詳解:音視頻流媒體播放器原理及應用
- Responsive Web Design with HTML5 and CSS3
- Instant Typeahead.js
- Gradle for Android
- ExtJS高級程序設計
- Hands-On Neural Network Programming with C#
- uni-app跨平臺開發與應用從入門到實踐
- 深入解析Java編譯器:源碼剖析與實例詳解
- 進入IT企業必讀的324個Java面試題
- Python全棧開發:基礎入門
- Python編程基礎教程
- 游戲設計的底層邏輯
- Ionic3與CodePush初探:支持跨平臺與熱更新的App開發技術