官术网_书友最值得收藏!

Scatter plot using seaborn

A scatter plot can also be generated using the seaborn library. Seaborn makes the graph visually better. We can illustrate the relationship between x and y for distinct subsets of the data by utilizing the size, style, and hue parameters of the scatter plot in seaborn.

Get more detailed information about the parameters from seaborn's documentation website: https://seaborn.pydata.org/generated/seaborn.scatterplot.html.

Now, let's load the Iris dataset:

df = sns.load_dataset('iris')

df['species'] = df['species'].map({'setosa': 0, "versicolor": 1, "virginica": 2})
sns.scatterplot(x=df["sepal_length"], y=df["sepal_width"], hue=df.species, data=df)

The scatter plot generated from the preceding code is as follows:

In the preceding plot, we can clearly see there are three species of flowers indicated by three distinct colors. It is more clear from the diagram how different specifies of flowers vary in terms of the sepal width and the length. 

主站蜘蛛池模板: 丹棱县| 大关县| 万载县| 灵璧县| 民权县| 仪陇县| 南召县| 精河县| 万宁市| 察哈| 体育| 德清县| 神池县| 雷山县| 隆德县| 吴忠市| 达拉特旗| 广汉市| 辽阳县| 霍邱县| 镶黄旗| 从江县| 泰来县| 安龙县| 泰顺县| 广昌县| 工布江达县| 青河县| 黑河市| 南木林县| 崇阳县| 邵武市| 隆安县| 达拉特旗| 苏尼特左旗| 土默特右旗| 新余市| 永福县| 沙雅县| 濉溪县| 承德市|