官术网_书友最值得收藏!

Scatter plot using seaborn

A scatter plot can also be generated using the seaborn library. Seaborn makes the graph visually better. We can illustrate the relationship between x and y for distinct subsets of the data by utilizing the size, style, and hue parameters of the scatter plot in seaborn.

Get more detailed information about the parameters from seaborn's documentation website: https://seaborn.pydata.org/generated/seaborn.scatterplot.html.

Now, let's load the Iris dataset:

df = sns.load_dataset('iris')

df['species'] = df['species'].map({'setosa': 0, "versicolor": 1, "virginica": 2})
sns.scatterplot(x=df["sepal_length"], y=df["sepal_width"], hue=df.species, data=df)

The scatter plot generated from the preceding code is as follows:

In the preceding plot, we can clearly see there are three species of flowers indicated by three distinct colors. It is more clear from the diagram how different specifies of flowers vary in terms of the sepal width and the length. 

主站蜘蛛池模板: 内江市| 桦川县| 新绛县| 汪清县| 乐亭县| 友谊县| 精河县| 海伦市| 抚宁县| 宿州市| 安岳县| 武威市| 木兰县| 扶风县| 城口县| 藁城市| 耒阳市| 海丰县| 陆川县| 武强县| 澄迈县| 咸丰县| 石阡县| 马公市| 天柱县| 江油市| 宽甸| 卢氏县| 靖边县| 堆龙德庆县| 伊宁县| 荆门市| 栾城县| 嘉定区| 威远县| 贺兰县| 本溪| 井陉县| 界首市| 全南县| 金华市|