- Hands-On C++ Game Animation Programming
- Gabor Szauer
- 303字
- 2021-06-30 14:46:02
Conjugate and inverse
Games mostly use normalized quaternions, which comes in handy when inverting quaternions. The inverse of a normalized quaternion is its conjugate. The conjugate
of a quaternion flips its axis of rotation:
- Implement the conjugate function in quat.cpp and remember to declare the function in quat.h:
quat conjugate(const quat& q) {
return quat(
-q.x,
-q.y,
-q.z,
q.w
);
}
- The proper inverse of a quaternion is the conjugate divided by the squared length of the quaternion. Implement the quaternion inverse function in quat.cpp. Add the function declaration to quat.h:
quat inverse(const quat& q) {
float lenSq = q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w;
if (lenSq < QUAT_EPSILON) {
return quat();
}
float recip = 1.0f / lenSq;
return quat(-q.x * recip,
-q.y * recip,
-q.z * recip,
q.w * recip
);
}
If you need to find out whether a quaternion is normalized or not, check the squared length. The squared length of a normalized quaternion is always 1. If a quaternion is normalized, its conjugate and inverse are the same. This means you can use the faster conjugate function, instead of the inverse function. In the next section, you will learn how to multiply two quaternions together.
- 現代C++編程:從入門到實踐
- ASP.NET Core:Cloud-ready,Enterprise Web Application Development
- 軟件安全技術
- Java Web開發學習手冊
- Learning Cython Programming
- Flink SQL與DataStream入門、進階與實戰
- HTML5 Mobile Development Cookbook
- WSO2 Developer’s Guide
- Mastering Articulate Storyline
- 網站構建技術
- C語言程序設計
- Python趣味編程與精彩實例
- JQuery風暴:完美用戶體驗
- 你真的會寫代碼嗎
- Python Linux系統管理與自動化運維