官术网_书友最值得收藏!

Minor

Every element in a matrix has a minor. The minor of an element is the determinant of a smaller matrix that eliminates the row and column of the element. For example, consider a 3 x 3 matrix—what is the minor of element 2, 1?

First, eliminate row 2 and column 1 from the matrix. This will result in a smaller 2 x 2 matrix. The determinant of this 2 x 2 matrix is the minor of element 2, 1. The following diagram demonstrates this:

Figure 3.6: The minor of element 2, 1 in a 3 x 3 matrix

Figure 3.6: The minor of element 2, 1 in a 3 x 3 matrix

This formula works for higher-dimension matrices as well. For example, the minor of an element in a 4 x 4 matrix is the determinant of some smaller, 3 x 3 matrix. A matrix of minors is a matrix where every element is the minor of the corresponding element from the input matrix.

主站蜘蛛池模板: 昭通市| 元江| 巴林左旗| 扎兰屯市| 河西区| 林芝县| 儋州市| 宜川县| 青铜峡市| 沅陵县| 凉山| 合江县| 五常市| 吉林省| 淮滨县| 西盟| 潮安县| 平阳县| 丽江市| 河间市| 松溪县| 阳江市| 永年县| 仪征市| 巢湖市| 沙坪坝区| 库伦旗| 杨浦区| 获嘉县| 沁源县| 巴林右旗| 台安县| 珲春市| 乐平市| 黑龙江省| 呼图壁县| 汤原县| 阿城市| 特克斯县| 年辖:市辖区| 乐昌市|