官术网_书友最值得收藏!

Minor

Every element in a matrix has a minor. The minor of an element is the determinant of a smaller matrix that eliminates the row and column of the element. For example, consider a 3 x 3 matrix—what is the minor of element 2, 1?

First, eliminate row 2 and column 1 from the matrix. This will result in a smaller 2 x 2 matrix. The determinant of this 2 x 2 matrix is the minor of element 2, 1. The following diagram demonstrates this:

Figure 3.6: The minor of element 2, 1 in a 3 x 3 matrix

Figure 3.6: The minor of element 2, 1 in a 3 x 3 matrix

This formula works for higher-dimension matrices as well. For example, the minor of an element in a 4 x 4 matrix is the determinant of some smaller, 3 x 3 matrix. A matrix of minors is a matrix where every element is the minor of the corresponding element from the input matrix.

主站蜘蛛池模板: 牙克石市| 白沙| 大同县| 砚山县| 孟村| 邵武市| 西昌市| 安康市| 安图县| 宜黄县| 宜都市| 西华县| 洪江市| 雷州市| 武穴市| 扶沟县| 蒙城县| 明光市| 揭阳市| 芮城县| 正定县| 安多县| 吴旗县| 龙门县| 平湖市| 新巴尔虎右旗| 泰和县| 容城县| 永州市| 延庆县| 安龙县| 伊春市| 扎囊县| 巴彦县| 昌乐县| 成安县| 丁青县| 沛县| 禄丰县| 嫩江县| 东明县|