- Practical Data Analysis Using Jupyter Notebook
- Marc Wintjen Andrew Vlahutin
- 141字
- 2021-06-18 18:58:58
Section 1: Data Analysis Essentials
In this section, we will learn how to speak the language of data by extracting useful and actionable insights from data using Python and Jupyter Notebook. We'll begin with the fundamentals of data analysis and work with the right tools to help you analyze data effectively. After your workspace has been set up, we'll learn how to work with data using two popular open source libraries available in Python: NumPy and pandas. This will lay the foundation for you to understand data so that you can prepare for Section 2: Solutions for Data Discovery.
This section includes the following chapters:
推薦閱讀
- 公有云容器化指南:騰訊云TKE實(shí)戰(zhàn)與應(yīng)用
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn):從新手小白到數(shù)據(jù)科學(xué)家
- LibGDX Game Development Essentials
- Word 2010中文版完全自學(xué)手冊(cè)
- 數(shù)據(jù)庫(kù)基礎(chǔ)與應(yīng)用:Access 2010
- 卷積神經(jīng)網(wǎng)絡(luò)的Python實(shí)現(xiàn)
- 企業(yè)大數(shù)據(jù)系統(tǒng)構(gòu)建實(shí)戰(zhàn):技術(shù)、架構(gòu)、實(shí)施與應(yīng)用
- Oracle RAC 11g實(shí)戰(zhàn)指南
- 大話Oracle Grid:云時(shí)代的RAC
- 數(shù)據(jù)庫(kù)原理與應(yīng)用(Oracle版)
- 基于Apache CXF構(gòu)建SOA應(yīng)用
- Spark大數(shù)據(jù)編程實(shí)用教程
- SQL應(yīng)用及誤區(qū)分析
- 探索新型智庫(kù)發(fā)展之路:藍(lán)迪國(guó)際智庫(kù)報(bào)告·2015(上冊(cè))
- MySQL技術(shù)內(nèi)幕:SQL編程