舉報

會員
Practical Data Analysis Using Jupyter Notebook
Dataliteracyistheabilitytoread,analyze,workwith,andargueusingdata.Dataanalysisistheprocessofcleaningandmodelingyourdatatodiscoverusefulinformation.Thisbookcombinesthesetwoconceptsbysharingproventechniquesandhands-onexamplessothatyoucanlearnhowtocommunicateeffectivelyusingdata.AfterintroducingyoutothebasicsofdataanalysisusingJupyterNotebookandPython,thebookwilltakeyouthroughthefundamentalsofdata.Packedwithpracticalexamples,thisguidewillteachyouhowtoclean,wrangle,analyze,andvisualizedatatogainusefulinsights,andyou'lldiscoverhowtoanswerquestionsusingdatawitheasy-to-followsteps.Laterchaptersteachyouaboutstorytellingwithdatausingcharts,suchashistogramsandscatterplots.Asyouadvance,you'llunderstandhowtoworkwithunstructureddatausingnaturallanguageprocessing(NLP)techniquestoperformsentimentanalysis.Alltheknowledgeyougainwillhelpyoudiscoverkeypatternsandtrendsindatausingreal-worldexamples.Inadditiontothis,youwilllearnhowtohandledataofvaryingcomplexitytoperformefficientdataanalysisusingmodernPythonlibraries.Bytheendofthisbook,you'llhavegainedthepracticalskillsyouneedtoanalyzedatawithconfidence.
目錄(109章)
倒序
- 封面
- 版權信息
- About Packt
- Why subscribe?
- Foreword
- About the author
- Preface
- Section 1: Data Analysis Essentials
- Fundamentals of Data Analysis
- The evolution of data analysis and why it is important
- What makes a good data analyst?
- Understanding data types and their significance
- Data classifications and data attributes explained
- Understanding data literacy
- Summary
- Further reading
- Overview of Python and Installing Jupyter Notebook
- Technical requirements
- Installing Python and using Jupyter Notebook
- Storing and retrieving data files
- Hello World! – running your first Python code
- Exploring Python packages
- Summary
- Future reading
- Getting Started with NumPy
- Technical requirements
- Understanding a Python NumPy array and its importance
- Making your first NumPy array
- Practical use cases of NumPy and arrays
- Summary
- Further reading
- Creating Your First pandas DataFrame
- Technical requirements
- Techniques for manipulating tabular data
- Understanding pandas and DataFrames
- Handling essential data formats
- Data dictionaries and data types
- Creating our first DataFrame
- Summary
- Further reading
- Gathering and Loading Data in Python
- Technical requirements
- Introduction to SQL and relational databases
- From SQL to pandas DataFrames
- Data about your data explained
- The importance of data lineage
- Summary
- Further reading
- Section 2: Solutions for Data Discovery
- Visualizing and Working with Time Series Data
- Technical requirements
- Data modeling for results
- Anatomy of a chart and data viz best practices
- Comparative analysis
- The shape of the curve
- Summary
- Further reading
- Exploring Cleaning Refining and Blending Datasets
- Technical requirements
- Retrieving viewing and storing tabular data
- Learning how to restrict sort and sift through data
- Cleaning refining and purifying data using Python
- Combining and binning data
- Summary
- Further reading
- Understanding Joins Relationships and Aggregates
- Technical requirements
- Foundations of join relationships
- Join types in action
- Explaining data aggregation
- Summary statistics and outliers
- Summary
- Further reading
- Plotting Visualization and Storytelling
- Technical requirements
- Explaining distribution analysis
- Understanding outliers and trends
- Geoanalytical techniques and tips
- Finding patterns in data
- Summary
- Further reading
- Section 3: Working with Unstructured Big Data
- Exploring Text Data and Unstructured Data
- Technical requirements
- Preparing to work with unstructured data
- Tokenization explained
- Counting words and exploring results
- Normalizing text techniques
- Excluding words from analysis
- Summary
- Further reading
- Practical Sentiment Analysis
- Technical requirements
- Why sentiment analysis is important
- Elements of an NLP model
- Sentiment analysis packages
- Sentiment analysis in action
- Summary
- Further reading
- Bringing It All Together
- Technical requirements
- Discovering real-world datasets
- Reporting results
- The Capstone project
- Summary
- Further reading
- Works Cited
- Other Books You May Enjoy
- Leave a review - let other readers know what you think 更新時間:2021-06-18 18:59:18
推薦閱讀
- 我們都是數據控:用大數據改變商業、生活和思維方式
- 計算機組成原理與接口技術:基于MIPS架構實驗教程(第2版)
- Redis使用手冊
- LibGDX Game Development Essentials
- 數據庫基礎與應用:Access 2010
- Architects of Intelligence
- Redis應用實例
- 文本挖掘:基于R語言的整潔工具
- Hadoop大數據實戰權威指南(第2版)
- Learning Proxmox VE
- 大數據架構商業之路:從業務需求到技術方案
- Construct 2 Game Development by Example
- Unity 2018 By Example(Second Edition)
- Spring Boot 2.0 Cookbook(Second Edition)
- 離線和實時大數據開發實戰
- 數據之美:一本書學會可視化設計
- 云原生架構:從技術演進到最佳實踐
- 工業大數據融合體系結構與關鍵技術
- Practical Convolutional Neural Networks
- 高效使用Redis:一書學透數據存儲與高可用集群
- 大數據處理之道
- 數據質量實踐手冊:4步構建高質量數據體系
- 數據要素價值化藍圖:全景、認知與路徑
- PostgreSQL實戰
- 計算機應用基礎項目化教程(微課版)
- Access 2010數據庫程序設計
- 算法訓練營:海量圖解+競賽刷題(進階篇)
- PostgreSQL服務器編程
- SQL Server 2012數據庫項目教程
- Near Field Communication with Android Cookbook