- The Reinforcement Learning Workshop
- Alessandro Palmas Emanuele Ghelfi Dr. Alexandra Galina Petre Mayur Kulkarni Anand N.S. Quan Nguyen Aritra Sen Anthony So Saikat Basak
- 70字
- 2021-06-11 18:37:43
2. Markov Decision Processes and Bellman Equations
Overview
This chapter will cover more of the theory behind reinforcement learning. We will cover Markov chains, Markov reward processes, and Markov decision processes. We will learn about the concepts of state values and action values along with Bellman equations to calculate previous quantities. By the end of this chapter, you will be able to solve Markov decision processes using linear programming methods.
推薦閱讀
- 圖解西門子S7-200系列PLC入門
- FPGA從入門到精通(實戰篇)
- Deep Learning with PyTorch
- 電腦常見故障現場處理
- Getting Started with Qt 5
- VCD、DVD原理與維修
- Rapid BeagleBoard Prototyping with MATLAB and Simulink
- 筆記本電腦使用、維護與故障排除從入門到精通(第5版)
- 龍芯自主可信計算及應用
- Managing Data and Media in Microsoft Silverlight 4:A mashup of chapters from Packt's bestselling Silverlight books
- STM32自學筆記
- 微服務實戰
- Raspberry Pi Home Automation with Arduino
- 詳解FPGA:人工智能時代的驅動引擎
- 計算機組裝與維護教程