- The Data Science Workshop
- Anthony So Thomas V. Joseph Robert Thas John Andrew Worsley Dr. Samuel Asare
- 102字
- 2021-06-11 18:27:22
3. Binary Classification
Overview
In this chapter, we will be using a real-world dataset and a supervised learning technique called classification to generate business outcomes.
By the end of this chapter, you will be able to formulate a data science problem statement from a business perspective; build hypotheses from various business drivers influencing a use case and verify the hypotheses using exploratory data analysis; derive features based on intuitions that are derived from exploratory analysis through feature engineering; build binary classification models using a logistic regression function and analyze classification metrics and formulate action plans for the improvement of the model.
推薦閱讀
- HornetQ Messaging Developer’s Guide
- C# 7 and .NET Core Cookbook
- 樂學Web編程:網站制作不神秘
- UI智能化與前端智能化:工程技術、實現方法與編程思想
- Python Geospatial Development(Second Edition)
- Banana Pi Cookbook
- PHP+MySQL網站開發項目式教程
- 微信小程序入門指南
- Learning Unity 2D Game Development by Example
- 全棧自動化測試實戰:基于TestNG、HttpClient、Selenium和Appium
- Internet of Things with ESP8266
- Java圖像處理:基于OpenCV與JVM
- 區塊鏈項目開發指南
- Java編程從入門到精通
- 軟件工程與UML案例解析(第三版)