舉報

會員
The Data Science Workshop
最新章節:
Summary
Wherethere’sdata,there’sinsight.Withsomuchdatabeinggenerated,thereisimmensescopetoextractmeaningfulinformationthat’llboostbusinessproductivityandprofitability.Bylearningtoconvertrawdataintogame-changinginsights,you’llopennewcareerpathsandopportunities.TheDataScienceWorkshopbeginsbyintroducingdifferenttypesofprojectsandshowingyouhowtoincorporatemachinelearningalgorithmsinthem.You’lllearntoselectarelevantmetricandevenassesstheperformanceofyourmodel.Totunethehyperparametersofanalgorithmandimproveitsaccuracy,you’llgethands-onwithapproachessuchasgridsearchandrandomsearch.Next,you’lllearndimensionalityreductiontechniquestoeasilyhandlemanyvariablesatonce,beforeexploringhowtousemodelensemblingtechniquesandcreatenewfeaturestoenhancemodelperformance.Inabidtohelpyouautomaticallycreatenewfeaturesthatimproveyourmodel,thebookdemonstrateshowtousetheautomatedfeatureengineeringtool.You’llalsounderstandhowtousetheorchestrationandschedulingworkflowtodeploymachinelearningmodelsinbatch.Bytheendofthisbook,you’llhavetheskillstostartworkingondatascienceprojectsconfidently.Bytheendofthisbook,you’llhavetheskillstostartworkingondatascienceprojectsconfidently.
目錄(121章)
倒序
- 封面
- 版權信息
- Preface
- About the Book
- 1. Introduction to Data Science in Python
- Introduction
- Application of Data Science
- Overview of Python
- Python for Data Science
- Scikit-Learn
- Summary
- 2. Regression
- Introduction
- Simple Linear Regression
- Multiple Linear Regression
- Conducting Regression Analysis Using Python
- Multiple Regression Analysis
- Assumptions of Regression Analysis
- Explaining the Results of Regression Analysis
- Summary
- 3. Binary Classification
- Introduction
- Understanding the Business Context
- Feature Engineering
- Data-Driven Feature Engineering
- Correlation Matrix and Visualization
- Summary
- 4. Multiclass Classification with RandomForest
- Introduction
- Training a Random Forest Classifier
- Evaluating the Model's Performance
- Maximum Depth
- Minimum Sample in Leaf
- Maximum Features
- Summary
- 5. Performing Your First Cluster Analysis
- Introduction
- Clustering with k-means
- Interpreting k-means Results
- Choosing the Number of Clusters
- Initializing Clusters
- Calculating the Distance to the Centroid
- Standardizing Data
- Summary
- 6. How to Assess Performance
- Introduction
- Splitting Data
- Assessing Model Performance for Regression Models
- Assessing Model Performance for Classification Models
- The Confusion Matrix
- Receiver Operating Characteristic Curve
- Area Under the ROC Curve
- Saving and Loading Models
- Summary
- 7. The Generalization of Machine Learning Models
- Introduction
- Overfitting
- Underfitting
- Data
- Random State
- Cross-Validation
- cross_val_score
- LogisticRegressionCV
- Hyperparameter Tuning with GridSearchCV
- Hyperparameter Tuning with RandomizedSearchCV
- Model Regularization with Lasso Regression
- Ridge Regression
- Summary
- 8. Hyperparameter Tuning
- Introduction
- What Are Hyperparameters?
- Finding the Best Hyperparameterization
- Tuning Using Grid Search
- GridSearchCV
- Random Search
- Summary
- 9. Interpreting a Machine Learning Model
- Introduction
- Linear Model Coefficients
- RandomForest Variable Importance
- Variable Importance via Permutation
- Partial Dependence Plots
- Local Interpretation with LIME
- Summary
- 10. Analyzing a Dataset
- Introduction
- Exploring Your Data
- Analyzing Your Dataset
- Analyzing the Content of a Categorical Variable
- Summarizing Numerical Variables
- Visualizing Your Data
- Boxplots
- Summary
- 11. Data Preparation
- Introduction
- Handling Row Duplication
- Converting Data Types
- Handling Incorrect Values
- Handling Missing Values
- Summary
- 12. Feature Engineering
- Introduction
- 13. Imbalanced Datasets
- Introduction
- Understanding the Business Context
- Challenges of Imbalanced Datasets
- Strategies for Dealing with Imbalanced Datasets
- Generating Synthetic Samples
- Summary
- 14. Dimensionality Reduction
- Introduction
- Creating a High-Dimensional Dataset
- Strategies for Addressing High-Dimensional Datasets
- Comparing Different Dimensionality Reduction Techniques
- Summary
- 15. Ensemble Learning
- Introduction
- Ensemble Learning
- Simple Methods for Ensemble Learning
- Advanced Techniques for Ensemble Learning
- Summary 更新時間:2021-06-11 18:27:53
推薦閱讀
- Microsoft Application Virtualization Cookbook
- 面向對象程序設計(Java版)
- QTP自動化測試進階
- 大模型RAG實戰:RAG原理、應用與系統構建
- Learning Unreal Engine Android Game Development
- R用戶Python學習指南:數據科學方法
- Vue.js應用測試
- IDA Pro權威指南(第2版)
- 軟件體系結構
- Training Systems Using Python Statistical Modeling
- 零基礎看圖學ScratchJr:少兒趣味編程(全彩大字版)
- JavaScript悟道
- MySQL 8從零開始學(視頻教學版)
- 從零開始學UI:概念解析、實戰提高、突破規則
- Java從入門到精通(視頻實戰版)
- Getting Started with JUCE
- 3ds Max瘋狂設計學院
- Spring Cloud微服務架構開發實戰
- Instant Highcharts
- OpenCL Programming by Example
- 計算機應用基礎教程
- C語言入門很輕松(微課超值版)
- 基于Kubernetes的容器云平臺實戰
- 快速開發(紀念版)
- Java程序設計經典300例
- Python+Excel職場辦公數據分析
- Learning Python Testing
- 前端開發必知必會:從工程核心到前沿實戰
- Jetpack Compose從入門到實戰
- Vue.js從入門到項目實戰(升級版)