官术网_书友最值得收藏!

參考文獻(xiàn)

[1] Suflita J M, Davidova I A, Gieg L M, et al. Anaerobic hydrocarbon biodegradation and the prospects for microbial enhanced energy production[M].Amsterdam: Elsevier Science, 2004:283-305.

[2] Rowe D, Muehlenbachs A. Low-temperature thermal generation of hydrocarbon gases in shallow shales[J]. Nature,1999, 398(6722): 61-63.

[3] Parkes J. Cracking anaerobic bacteria[J]. Nature, 1999,401(6750): 217-218.

[4] Hallmann C, Schwark L, Grice K. Community dynamics of anaerobic bacteria in deep petroleum reservoirs[J]. Nature Geoscience, 2008, 1(9): 588-591.

[5] Head I M, Jones D M, Larter S R. Biological activity in the deep subsurface and the origin of heavy oil[J]. Nature, 2003, 426(6964): 344-352.

[6] Jackson B E, McInerney M J. Anaerobic microbial metabolism can proceed close to thermodynamic limits[J]. Nature, 2002, 415(6870): 454-456.

[7] Larter S R, Wilhelms A, Head I M, et al. The controls on the composition of biodegraded oils in the deep subsurface. Part 1: biodegradation rates in petroleum reservoirs[J].Organic Geochemistry, 2003, 34(4): 601-613.

[8] Jennings E, Tanner R. The Effects of a bacillus biosurfactant on methanogenic hexadecane degradation[J]. Bioremediation Journal, 2004, 8(1/2): 79 86.

[9] Gieg L M, Duncan K E, Suflita J M. Bioenergy production via microbial conversion of residual oil to natural gas[J]. Appied and Environmental Microbiology, 2008, 74(10): 3022-3029.

[10] Youssef N, Elshahed M S, McInerney M J. Microbial process in oil fields: culprits, problems and opportunities, advances in applied microbiology[M]. Amsterdam: Elsevier Academic Press, 2008:141-251.

[11] Belyaev S S, Borzenkov I A, Nazina T N, et al. Use of microorganisms in the biotechnology for the enhancement of oil recovery[J]. Microbiology, 2004, 73(5): 590-598.

[12] McInerney M J, Nagle D P, Knapp R M. Microbially enhanced oil recovery: past, present and future[M]. Petroleum Microbiology, 2005: 215-237.

[13] 王俊, 俞理, 黃立信. 油藏生物氣研究進(jìn)展[J]. 特種油氣藏, 2010, 05(4): 8-12.

[14] 王萬春,陶明信. 地質(zhì)微生物作用與油氣資源[J].地質(zhì)通報(bào),2005, 24(10-11): 1022-1026.

[15] 李贊豪, 李季, 向龍斌, 等. 原油的厭氧細(xì)菌降解作用及其產(chǎn)物特征[J].石油與天然氣地質(zhì), 1998, 19(1): 29-34.

[16] 張水昌, 趙文智, 李先奇, 等. 生物氣研究新進(jìn)展與勘探策略[J]. 石油勘探與開發(fā), 2005, 04(3): 90-96.

[17] 汪衛(wèi)東, 王靜, 耿雪麗, 等. 儲(chǔ)層殘余油生物氣化技術(shù)現(xiàn)狀與展望[J]. 石油地質(zhì)與工程, 2012, 01(2): 78-81.

[18] Muller F M. On methane fermentation of higher alkanes[J]. Antonie van Leeuwenhoek, 1957, 23(1): 369-384.

[19] Jack T R, Lee E, Mueller J. Anaerobic gas production from crude oil[J]. Microbes and Oil Recovery: International Bioresources Journal, 1985, 1(1): 167-180.

[20] Zengler K, Richnow H H, Rossello-Mora R, et al. Methane formation from long-chain alkanes by anaerobic microorganisms[J]. Nature, 1999, 401(6750): 266–269.

[21] Anderson R T, Lovley D R. Hexadecane decay by methanogenesis[J]. Nature, 2000, 404(13): 722–723.

[22] Townsend G T, Prince R C, Suflita J M. Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer[J]. Environmental Sci ence and Technology, 2003, 37(22): 5213–5218.

[23] Siddique T, Fedorak P M, Foght J M. Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions[J]. Environmental Science and Technology, 2006, 40(17): 5459–5464.

[24] Jones D M, Head I M, Gray N D, et al. Crude oil biodegradation via methanogenesis in subsurface petroleum reservoirs[J]. Nature, 2008, 451(7175): 176–181.

[25] R?ling W F M, Head I M, Larter S R. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects[J]. Research in Microbiology, 2003, 154(5): 321-328.

[26] Milkov A V, Dzou L. Geochemical evidence of secondary microbial methane from very slight biodegradation of undersaturated oils in a deep hot reservoir[J]. Geology, 2007, 35(5): 455–458.

[27] Bastin E S,Greer F E,Merritt C A,et al.The presence of sulphate reducing bacteria in oil field waters[J].Science,1926,63(1618):21-24.

[28] Nazina T N, Shestakova N M, Grigor’yan A A, et al. Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang oil field (PR China)[J]. Microbiology, 2006, 75(1): 55-65.

[29] Magot M. Indigenous microbial communities in oil fields, petroleum microbiology[M]. Washington DC: ASM Press, 2005: 21-33.

[30] Lovley D R,Baedecker M J,Lonergan D J,et al.Oxidation of aromatic contaminants coupled to microbial iron reduction[J].Nature,1989,339(6222):297-300.

[31] Gray N.D., Sherry A., Larter S.R., et al. Biogenic methane production in formation waters from a large gas field in the North Sea[J]. Extremophiles, 2009, 13(3): 511-519.

[32] Duncan K.E., Gieg L.M., Parisi V.A., et al. Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities[J]. Environmental Science and Technology, 2009, 43(20): 7977-7984.

[33] Aitken C.M., Jones D.M., Larter S.R. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs[J]. Nature, 2004, 431(7006): 291-294.

[34] 馮一瀟. 油藏發(fā)酵細(xì)菌的鑒定及石油烴厭氧生物代謝機(jī)理初探[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2009.

[35] 承磊. 石油烴厭氧生物降解過程中的產(chǎn)甲烷古菌研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2007.

[36] 劉金峰,牟伯中. 油藏極端環(huán)境中的微生物[J]. 微生物學(xué)雜志, 2004, 24(4): 31-34.

[37] 黎霞. 油藏發(fā)酵細(xì)菌的鑒定及石油烴厭氧生物降解研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2008.

[38] 吳偉林. 石油烴厭氧降解菌的篩選及其降解特性研究[D]. 青島: 中國石油大學(xué)(華東), 2011.

[39] Mbadinga Serge Maurice. 高溫油藏微生物群落結(jié)構(gòu)及石油烴厭氧降解產(chǎn)甲烷體系構(gòu)建研究[D]. 上海: 華東理工大學(xué), 2012.

[40] 麻婷婷. 乙酸和硫酸鹽對(duì)石油烴降解產(chǎn)甲烷過程影響的研究[D].北京: 中國農(nóng)業(yè)科學(xué)院, 2014.

[41] 周蕾. 厭氧烴降解產(chǎn)甲烷菌系的組成及其代謝產(chǎn)物的特征[D]. 上海: 華東理工大學(xué), 2012.

[42] 何喬. 烴類化合物厭氧降解產(chǎn)甲烷中間代謝產(chǎn)物初探[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2013.

[43] 王立影. 烷烴厭氧降解產(chǎn)甲烷體系菌群結(jié)構(gòu)與功能的研究[D].上海: 華東理工大學(xué), 2011.

[44] 丁晨. 低溫石油烴降解產(chǎn)甲烷富集物的培養(yǎng)及微生物群落結(jié)構(gòu)分析[D].北京: 中國農(nóng)業(yè)科學(xué)院, 2013.

[45] 李凱平. 長鏈烷烴厭氧降解產(chǎn)甲烷體系的菌群組成及變化[D].上海: 華東理工大學(xué), 2012.

[46] Bauschlicher J.R., Langhoff S.R. Bond dissociation energies for substituted polycyclic aromatic hydrocarbons and their cations[J]. Molecular Physics, 1999, 96(4): 471-476.

[47] Widdel F., Rabus R. Anaerobic biodegradation of saturated and aromatic hydrocarbons[J]. Current Opinion Biotechnology, 2001, 12(3): 259-276.

[48] 王俊. 油藏產(chǎn)氣微生物代謝機(jī)理研究[D]. 北京: 中國科學(xué)院研究生院(滲流流體力學(xué)研究所), 2011.

[49] Dolfing J., Larter S.R., Head I.M. Thermodynamic constraints on methanogenic crude oil biodegradation[J]. The ISME Journal, 2008, 2(4): 442-452.

[50] Westerholm M. Biogas production through the syntrophic acetate-oxidising pathway: Characterization and detection of syntrophic acetate-oxidising bacteria[M]. Uppsala: Swedish University of Agricultural Sciences, 2012:15-29.

[51] 朱光有, 張水昌, 趙文智, 等. 中國稠油區(qū)淺層天然氣地球化學(xué)特征與成因機(jī)制[J]. 中國科學(xué): D 輯, 2008, 37(A02): 80-89.

[52] Roling W.F.M., Head I.M., Larter S.R. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects[J]. Research in Microbiology, 2003, 154(5): 321-328.

[53] Chakraborty R., Coates J.D. Anaerobic degradation of monoaromatic hydrocarbons[J].Applied Microbiology and Biotechnology, 2004, 64(4): 437-446.

[54] Lovley D.R., Baedecker M.J., Lonergan D.J., et al. Oxidation of aromatic contaminants coupled to microbial iron reduction[J]. Nature, 1989, 339(6222): 297-300.

[55] Aeckersberg F., Bak F., Widdel F. Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium[J]. Archives of Microbiology, 1991, 156(1): 5-14.

[56] Heider J., Spormann A.M., Beller H.R., et al. Anaerobic bacterial metabolism of hydrocarbons[J]. FEMS Microbiology Reviews, 1999, 22(5): 459-473.

[57] Spormann A.M., Widdel F. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria[J]. Biodegradation, 2000, 11(2/3): 85-105.

[58] Widdel F., Boetius A., Rabus R. Anaerobic biodegradation of hydrocarbons including methane, the Prokaryotes: Archaea. Bacteria: Firmicutes, Actinomycetes[M]. New York: Springer, 2006: 1028-1049.

[59] Grossi V., Cravo-Laureau C., Guyoneaud R., et al. Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: a summary[J]. Organic Geochemistry, 2008, 39(8): 1197-1203.

[60] Mbadinga S.M., Wang L.Y., Zhou L., et al. Microbial communities involved in anaerobic degradation of alkanes[J]. International Biodeterioration and Biodegradation, 2011, 65(1): 1-13.

[61] Bastin E.S., Greer F.E., Merritt C.A., et al. The presence of sulphate reducing bacteria in oil field waters[J]. Science, 1926, 63(1618): 21-24.

[62] Magot M., Ollivier B., Patel B.K.C. Microbiology of Petroleum reservoirs[J]. Antonievan LeeuwenLhoek, 2000, 77(2): 103-116.

[63] Miranda-Tello E., Fardeau M.L., Sepúlveda J., et al. Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrate-and thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(5): 1509-1514.

[64] Foght J. Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects[J].Journal of Molecular Microbiology and Biotechnology, 2008, 15(2-3): 93-120.

[65] 胡恒宇, 顧貴洲, 張強(qiáng), 趙東風(fēng), 等. 殘余油微生物氣化產(chǎn)甲烷菌群的研究進(jìn)展[J]. 化學(xué)與生物工程, 2014, 31(4): 9-14.

[66] Rabus R., Fukui M., Wilkes H., et al. Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil[J]. Applied and Environmental Microbiology, 1996, 62(10): 3605-3613.

[67] Rueter P., Rabus R., Wilkes H., Aeekersberg F.A., et al. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria[J].Nature, 1994, 372(6505): 455-458.

[68] So C.M., Young L.Y. Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01[J]. Applied and Environmental Microbiology, 1999, 65(12): 5532-5540.

[69] Cravo-Laureau C., Matheron R., Joulian C., Cayol J.L. Desulfatibacillum alkenivorans sp. nov., a novel n-alkene-degrading, sulfate-reducing bacterium, and emended description of the genus Desulfatibacillum[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(11): 1639-1642.

[70] Musat F., Galushko A., Jacob J., et al. Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria[J]. Environmental Microbiology, 2009, 11(1): 209-214.

[71] Dolfing J., Zeyer J., Binder-Eicher P., et al. Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen[J]. Archives of Microbiology, 1990, 154(4): 336-341.

[72] Westerholm M. Biogas production through the syntrophic acetate-oxidising pathway[M].Amsterdam: Elsevier Science, 2012:67-86.

[73] Ziganshin A.M., Schmidt T., Scholwin F., et al. Bacteria andarchaea involved in anaerobic digestion of distillers grains with solubles[J]. Applied Microbiology and Biotechnology, 2011, 89(6): 2039-2052.

[74] Widdel F., Boetius A., Rabus R. Anaerobic Biodegradation of Hydrocarbons Including Methane[J]. Prokaryotes, 2006, 1(2): 323-335.

[75] 蔡云. 石油烴厭氧降解微生物特征及產(chǎn)甲烷古菌研究[D]. 青島: 中國石油大學(xué)(華東),2013.

[76] 張強(qiáng). 稠油油藏甲烷化內(nèi)源微生物激活條件研究[D]. 青島: 中國石油大學(xué)(華東), 2014.

[77] 李政. 耐熱石油降解混合菌群降解特性及多環(huán)芳烴共代謝作用的研究[D]. 青島:中國石油大學(xué)(華東), 2012.

[78] 顧貴州. 石油烴厭氧降解微生物的DGGE分析及產(chǎn)甲烷效率研究[D]. 青島: 中國石油大學(xué)(華東), 2015.

[79] Hu H.Y., Zhao D.F., Zhang Q. Effect of Eutrophic River Water and Trace Element on Oil Gasification into Methane by Indigenous Microbes[J]. Biotechnology, 2015,14(1): 29-35.

[80] 李慧, 陳冠雄, 楊濤, 等. 沈撫灌區(qū)含油污水灌溉對(duì)稻田土壤微生物種群及土壤酶活性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2005, 16(7): 1355-1359.

[81] Boopathy R. Use of anaerobic soil slurry reactors for the removal of petroleum hydrocarbons in soil[J]. International Biodeterioration and Biodegradation, 2003, 52(3): 161-166.

[82] 劉曉玲.城市污泥厭氧發(fā)酵產(chǎn)酸條件優(yōu)化及其機(jī)理研究[D]. 無錫:江南大學(xué), 2009.

[83] Mishra S., Jyot J., Kuhad R.C., et al. Evaluation of inoculum addition to stimulate in situ bioremediation of oil sludge-contaminated soil[J]. Applied and Environmental Microbiology, 2001, 67(4): 1675-1681.

[84] 劉春爽, 趙東風(fēng), 吳文華, 等. 蘆葦修復(fù)新疆石油污染土壤效果[J]. 中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版), 2012, 36(2): 186-190.

[85] 馬可. 水稻土中甲烷循環(huán)的微生物學(xué)機(jī)理及其主要調(diào)控因子[D]. 北京: 中國農(nóng)業(yè)大學(xué), 2010.

[86] 李政, 趙朝成, 張?jiān)撇ǎ?等. 16 種 EPA-PAHs 復(fù)合污染土壤的菌群修復(fù)[J]. 中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版), 2012, 36(1): 175-181.

[87] Lin T.C., Pan P.T., Cheng S.S. Exsitu bioremediation of oil-contaminated soil[J]. Journal of Hazardous Materials, 2010, 176(1): 27-34.

[88] 彭先芝, 張干, 陳繁忠, 等. 好氧生物降解中烷烴單體穩(wěn)定同位素分餾及其環(huán)境意義[J].科學(xué)通報(bào), 2004, 49(24): 2605-2611

[89] 齊永強(qiáng), 王紅旗, 劉敬奇. 土壤中石油污染物微生物降解及其降解去向[J]. 中國工程科學(xué), 2003, 5(8): 70-75.

[90] Fardeau M.L., Ollivier B., Patel B.K.C., et al. Thermotoga hypogea sp. nov” a xylanolytic, thermophilic bacterium from an oil-producing well[J]. International Journal of Systematic Bacteriology, 1997, 47(4): 1013-1019

[91] Plugge C.M., Balk M., Zoetendal E.G., et al. Gelria glutamica gen. nov” sp. nov” a thermophilic, obligately syntrophic, glutamate-degrading anaerobe[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(2): 401-407

[92] Staley B.F., Francis L., Barlaz M.A. Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse[J]. Applied and Environmental Microbiology, 2011, 77(7): 2381-2391.

[93] 賈仲軍. 穩(wěn)定性同位素核酸探針技術(shù) DNA-SIP 原理與應(yīng)用[J]. 微生物學(xué)報(bào), 2011, 51(12): 1585-1594.

[94] 張琴, 莢榮, 豆長明, 等. 重金屬污染土壤總 DNA 提取方法的研究—土壤預(yù)處理和硫酸銨鋁在 DNA 提取中的應(yīng)用[J]. 微生物學(xué)通報(bào), 2014, 41(1): 191-199.

[95] Blume F., Bergmann I., Nettmann E., et al. Methanogenic population dynamics during semi‐continuous biogas fermentation and acidification by overloading[J]. Journal of Applied Microbiology, 2010, 109(2): 441-450.

[96] Feng X.M., Karlsson A., Svensson B.H., Bertilsson S. Impact of trace element addition on biogas production from food industrial waste–linking process to microbial communities[J]. FEMS Microbiology Ecology, 2010, 74(1): 226-240.

[97] Fotidis I.A., Karakashev D., Kotsopoulos T.A., et al. Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition[J]. FEMS Microbiology Ecology, 2013, 83(1): 38-48.

[98] Hao L.P., Lu F., He P.J., et al. Predominant contribution of syntrophic acetate oxidation to thermophilic methane formation at high acetate concentrations[J]. Environmental Science and Technology, 2010, 45(2): 508-513.

[99] Cereal Genomics: Methods and Protocols[Z]. Human Press, 2014.

[100] 傅霖, 辛明秀. 產(chǎn)甲烷菌的生態(tài)多樣性及工業(yè)應(yīng)用[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2009, 15(4): 574-578.

[101] 龍勝祥, 陳純芳, 李辛子, 等. 中國石化煤層氣資源發(fā)展前景[J]. 石油與天然氣地質(zhì), 2011, 03(4): 481-488.

[102] Lowe D.C. Global change: A green source of surprise[J]. Nature, 2006, 439(7073): 148-149.

[103] 程海鷹, 肖生科, 馬光東, 等. 營養(yǎng)注入后油藏微生物群落16SrRNA基因的T-RFLP對(duì)比分析[J]. 石油勘探與開發(fā), 2006, 33(3): 356-359.

[104] Ferry J.G. Methane:small molecule, big impact[J]. Science, 1997, 278(5342): 13-14.

[105] Belyaev S.S., Wolkin R., Kenealy W.R., et al. Methanogenic bacteria from the Bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation[J]. Applied and Environmental Microbiology, 1983, 45(2): 691-697.

[106] Ivanov M.V., Belyaev S.S., Zyakun A.M., et al. Microbiological formation of methane in the oil-field development[J]. Geokhimiya, 1983 (11): 1647-1654.

[107] Ravot G., Magot M., Fardeau M.L., et al. Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well[J]. International Journal of Systematic Bacteriology, 1995, 45(2): 308-314. 

[108] Nilsen R.K., Torsvik T. Methanococcus thermolithotrophicus Isolated from North Sea Oil Field Reservoir Water[J]. Applied and Environmental Microbiology, 1996, 62(2): 728-731.

[109] Ollivier B., Cayol J.L., Patel B.K.C., et al. Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well[J]. FEMS Microbiology Letters, 1997, 147(1): 51-56.

[110] Ollivier B., Fardeau M.L., Cayol J.L., et al. Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well[J]. International Journal of Systematic Bacteriology, 1998, 48(3): 821-828.

[111] Obraztsova A.Y., Shipin O.V., Bezrukova L.V., et al. Properties of the coccoid methylotrophic methanogen, methanococcoides-euhalobius sp-nov[J]. Microbiology, 1987, 56(4): 523-527.

[112] Davidova I.A., Hannsen H.J.M., Stams A.J.M., et al. Taxonomic description of Methanococcoides euhalobius and its transfer to the Methanohalophilus genus[J]. Ailtonie van Leeuwenhoek, 1997, 71(4):313-318.

[113] Ni S.S., Boone D.R. Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil wel, characterization of Msieiliae T4/MT, and emendation of M.sieiliae[J]. International Journal of Systematic and Evolutionary Microbiology 1991, 41(3):410-416.

主站蜘蛛池模板: 北京市| 尚义县| 西盟| 方正县| 康定县| 麻栗坡县| 鹿邑县| 太仆寺旗| 大英县| 抚宁县| 莒南县| 博白县| 沧州市| 台北县| 司法| 兰坪| 泗水县| 丰都县| 洛浦县| 长白| 错那县| 纳雍县| 丹江口市| 工布江达县| 依兰县| 嵊泗县| 西林县| 旺苍县| 乌拉特前旗| 全南县| 吉水县| 白朗县| 德惠市| 元阳县| 于都县| 盐亭县| 肇东市| 张家口市| 左云县| 织金县| 莆田市|