舉報

會員
R Machine Learning By Example
最新章節:
Index
Ifyouareinterestedinminingusefulinformationfromdatausingstate-of-the-arttechniquestomakedata-drivendecisions,thisisago-toguideforyou.Nopriorexperiencewithdatascienceisrequired,althoughbasicknowledgeofRishighlydesirable.Priorknowledgeinmachinelearningwouldbehelpfulbutisnotnecessary.
目錄(72章)
倒序
- 封面
- 版權信息
- Credits
- About the Authors
- About the Reviewer
- www.PacktPub.com
- Preface
- Downloading the color images of this book
- Chapter 1. Getting Started with R and Machine Learning
- Delving into the basics of R
- Data structures in R
- Working with functions
- Controlling code flow
- Advanced constructs
- Next steps with R
- Machine learning basics
- Summary
- Chapter 2. Let's Help Machines Learn
- Understanding machine learning
- Algorithms in machine learning
- Families of algorithms
- Summary
- Chapter 3. Predicting Customer Shopping Trends with Market Basket Analysis
- Detecting and predicting trends
- Market basket analysis
- Evaluating a product contingency matrix
- Frequent itemset generation
- Association rule mining
- Summary
- Chapter 4. Building a Product Recommendation System
- Understanding recommendation systems
- Issues with recommendation systems
- Collaborative filters
- Building a recommender engine
- Production ready recommender engines
- Summary
- Chapter 5. Credit Risk Detection and Prediction – Descriptive Analytics
- Types of analytics
- Our next challenge
- What is credit risk?
- Getting the data
- Data preprocessing
- Data analysis and transformation
- Next steps
- Summary
- Chapter 6. Credit Risk Detection and Prediction – Predictive Analytics
- Predictive analytics
- How to predict credit risk
- Important concepts in predictive modeling
- Getting the data
- Data preprocessing
- Feature selection
- Modeling using logistic regression
- Modeling using support vector machines
- Modeling using decision trees
- Modeling using random forests
- Modeling using neural networks
- Model comparison and selection
- Summary
- Chapter 7. Social Media Analysis – Analyzing Twitter Data
- Social networks (Twitter)
- Data mining @social networks
- Getting started with Twitter APIs
- Twitter data mining
- Challenges with social network data mining
- References
- Summary
- Chapter 8. Sentiment Analysis of Twitter Data
- Understanding Sentiment Analysis
- Sentiment analysis upon Tweets
- Summary
- Index 更新時間:2021-07-09 19:34:36
推薦閱讀
- 零起步輕松學單片機技術(第2版)
- 嵌入式系統及其開發應用
- 電力自動化實用技術問答
- 火格局的時空變異及其在電網防火中的應用
- Embedded Programming with Modern C++ Cookbook
- 觸控顯示技術
- MCGS嵌入版組態軟件應用教程
- Introduction to R for Business Intelligence
- AVR單片機工程師是怎樣煉成的
- Embedded Linux Development using Yocto Projects(Second Edition)
- Practical Network Automation
- 基于Quartus Ⅱ的數字系統Verilog HDL設計實例詳解
- 網絡規劃與設計
- Photoshop CS4圖像處理考前12小時
- Outlook時間管理秘笈
- 機器學習公式詳解
- 樂高機器人:Scratch與WeDo編程基礎實戰應用
- Getting Started with Kubernetes
- Mac OS X 10.8 Mountain Lion中文版入門
- Docker High Performance
- C語言程序設計任務驅動式教程(第2版)(微課版)
- 人工智能基礎
- 雙語版Java程序設計
- 可重入生產系統的多尺度建模與控制策略研究
- Windows Server 2008系統管理與網絡管理
- 操作系統(第3版)
- Visual C++.NET串口通信及測控應用典型實例
- 粗糙關系數據庫
- Hands-On Q-Learning with Python
- Flash動畫設計