舉報(bào)

會(huì)員
Introduction to R for Business Intelligence
Thisbookisfordataanalysts,businessanalysts,datascienceprofessionalsoranyonewhowantstolearnanalyticapproachestobusinessproblems.BasicfamiliaritywithRisexpected.
目錄(67章)
倒序
- 封面
- 版權(quán)頁(yè)
- Credits
- About the Author
- Acknowledgement
- About the Reviewers
- www.PacktPub.com
- eBooks discount offers and more
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Chapter 1. Extract Transform and Load
- Understanding big data in BI analytics
- Extracting data from sources
- Transforming data to fit analytic needs
- Loading data into business systems for analysis
- Summary
- Chapter 2. Data Cleaning
- Summarizing your data for inspection
- Finding and fixing flawed data
- Converting inputs to data types suitable for analysis
- Adapting string variables to a standard
- Summary
- Chapter 3. Exploratory Data Analysis
- Understanding exploratory data analysis
- Analyzing a single data variable
- Analyzing two variables together
- Exploring multiple variables simultaneously
- Summary
- Chapter 4. Linear Regression for Business
- Understanding linear regression
- Checking model assumptions
- Using a simple linear regression
- Refining data for simple linear regression
- Introducing multiple linear regression
- Summary
- Chapter 5. Data Mining with Cluster Analysis
- Explaining clustering analysis
- Partitioning using k-means clustering
- Clustering using hierarchical techniques
- Summary
- Chapter 6. Time Series Analysis
- Analyzing time series data with linear regression
- Introducing key elements of time series analysis
- Building ARIMA time series models
- Summary
- Chapter 7. Visualizing the Datas Story
- Visualizing data
- Plotting with ggplot2
- Geo-mapping using Leaflet
- Creating interactive graphics using rCharts
- Summary
- Chapter 8. Web Dashboards with Shiny
- Creating a basic Shiny app
- Creating a marketing-campaign Shiny app
- Deploying your Shiny app
- Summary
- Appendix A. References
- Appendix B. Other Helpful R Functions
- Chapter 1 - Extract Transform and Load
- Chapter 2 - Data Cleaning
- Appendix C. R Packages Used in the Book
- Appendix D. R Code for Supporting Market Segment Business Case Calculations 更新時(shí)間:2021-08-20 10:34:48
推薦閱讀
- 高效能辦公必修課:Word圖文處理
- PostgreSQL 11 Server Side Programming Quick Start Guide
- 返璞歸真:UNIX技術(shù)內(nèi)幕
- 運(yùn)動(dòng)控制器與交流伺服系統(tǒng)的調(diào)試和應(yīng)用
- 大數(shù)據(jù)驅(qū)動(dòng)的設(shè)備健康預(yù)測(cè)及維護(hù)決策優(yōu)化
- 具比例時(shí)滯遞歸神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性及其仿真與應(yīng)用
- Ruby on Rails敏捷開(kāi)發(fā)最佳實(shí)踐
- 從零開(kāi)始學(xué)PHP
- 基于企業(yè)網(wǎng)站的顧客感知服務(wù)質(zhì)量評(píng)價(jià)理論模型與實(shí)證研究
- 機(jī)器人人工智能
- Linux Shell編程從初學(xué)到精通
- 基于ARM9的小型機(jī)器人制作
- 新一代人工智能與語(yǔ)音識(shí)別
- PostgreSQL High Performance Cookbook
- 軟件質(zhì)量管理實(shí)踐
- 輸送技術(shù)、設(shè)備與工業(yè)應(yīng)用
- Learning OpenShift
- Internet of Things with Raspberry Pi 3
- 仿蛛機(jī)器人的設(shè)計(jì)與制作
- 瘋狂Java實(shí)戰(zhàn)演義
- Healthcare Analytics Made Simple
- Docker High Performance
- Mobile Game Design Essentials
- Monitoring with Opsview
- Excel VBA語(yǔ)法與應(yīng)用手冊(cè)
- Mastering Go
- .NET Web高級(jí)開(kāi)發(fā)
- 對(duì)抗機(jī)器學(xué)習(xí):機(jī)器學(xué)習(xí)系統(tǒng)中的攻擊和防御
- 讓Excel飛!
- Keras Deep Learning Cookbook