首頁(yè) > 計(jì)算機(jī)網(wǎng)絡(luò) >
數(shù)據(jù)庫(kù)
> Python:Advanced Predictive Analytics最新章節(jié)目錄
舉報(bào)

會(huì)員
Python:Advanced Predictive Analytics
最新章節(jié):
Index
Thisbookisdesignedforbusinessanalysts,BIanalysts,datascientists,orjuniorleveldataanalystswhoarereadytomoveonfromaconceptualunderstandingofadvancedanalyticsandbecomeanexpertindesigningandbuildingadvancedanalyticssolutionsusingPython.IfyouarefamiliarwithcodinginPython(orsomeotherprogramming/statistical/scriptinglanguage)buthaveneverusedorreadaboutpredictiveanalyticsalgorithms,thisbookwillalsohelpyou.
目錄(130章)
倒序
- 封面
- 版權(quán)信息
- Credits
- Preface
- Part 1. Module 1
- Chapter 1. Getting Started with Predictive Modelling
- Introducing predictive modelling
- Applications and examples of predictive modelling
- Python and its packages – download and installation
- Python and its packages for predictive modelling
- IDEs for Python
- Summary
- Chapter 2. Data Cleaning
- Reading the data – variations and examples
- Various methods of importing data in Python
- The read_csv method
- Use cases of the read_csv method
- Case 2 – reading a dataset using the open method of Python
- Case 3 – reading data from a URL
- Case 4 – miscellaneous cases
- Basics – summary dimensions and structure
- Handling missing values
- Creating dummy variables
- Visualizing a dataset by basic plotting
- Summary
- Chapter 3. Data Wrangling
- Subsetting a dataset
- Generating random numbers and their usage
- Grouping the data – aggregation filtering and transformation
- Random sampling – splitting a dataset in training and testing datasets
- Concatenating and appending data
- Merging/joining datasets
- Summary
- Chapter 4. Statistical Concepts for Predictive Modelling
- Random sampling and the central limit theorem
- Hypothesis testing
- Chi-square tests
- Correlation
- Summary
- Chapter 5. Linear Regression with Python
- Understanding the maths behind linear regression
- Making sense of result parameters
- Implementing linear regression with Python
- Model validation
- Handling other issues in linear regression
- Summary
- Chapter 6. Logistic Regression with Python
- Linear regression versus logistic regression
- Understanding the math behind logistic regression
- Implementing logistic regression with Python
- Model validation and evaluation
- Model validation
- Summary
- Chapter 7. Clustering with Python
- Introduction to clustering – what why and how?
- Mathematics behind clustering
- Implementing clustering using Python
- Fine-tuning the clustering
- Summary
- Chapter 8. Trees and Random Forests with Python
- Introducing decision trees
- Understanding the mathematics behind decision trees
- Implementing a decision tree with scikit-learn
- Understanding and implementing regression trees
- Understanding and implementing random forests
- Summary
- Chapter 9. Best Practices for Predictive Modelling
- Best practices for coding
- Best practices for data handling
- Best practices for algorithms
- Best practices for statistics
- Best practices for business contexts
- Summary
- Appendix A. A List of Links
- Part 2. Module 2
- Chapter 1. From Data to Decisions – Getting Started with Analytic Applications
- Designing an advanced analytic solution
- Case study: sentiment analysis of social media feeds
- Case study: targeted e-mail campaigns
- Summary
- Chapter 2. Exploratory Data Analysis and Visualization in Python
- Exploring categorical and numerical data in IPython
- Time series analysis
- Working with geospatial data
- Introduction to PySpark
- Summary
- Chapter 3. Finding Patterns in the Noise – Clustering and Unsupervised Learning
- Similarity and distance metrics
- Affinity propagation – automatically choosing cluster numbers
- k-medoids
- Agglomerative clustering
- Streaming clustering in Spark
- Summary
- Chapter 4. Connecting the Dots with Models – Regression Methods
- Linear regression
- Tree methods
- Scaling out with PySpark – predicting year of song release
- Summary
- Chapter 5. Putting Data in its Place – Classification Methods and Analysis
- Logistic regression
- Fitting the model
- Evaluating classification models
- Separating Nonlinear boundaries with Support vector machines
- Comparing classification methods
- Case study: fitting classifier models in pyspark
- Summary
- Chapter 6. Words and Pixels – Working with Unstructured Data
- Working with textual data
- Principal component analysis
- Images
- Case Study: Training a Recommender System in PySpark
- Summary
- Chapter 7. Learning from the Bottom Up – Deep Networks and Unsupervised Features
- Learning patterns with neural networks
- The TensorFlow library and digit recognition
- Summary
- Chapter 8. Sharing Models with Prediction Services
- The architecture of a prediction service
- Clients and making requests
- Server – the web traffic controller
- Persisting information with database systems
- Case study – logistic regression service
- Summary
- Chapter 9. Reporting and Testing – Iterating on Analytic Systems
- Checking the health of models with diagnostics
- Iterating on models through A/B testing
- Guidelines for communication
- Summary
- Bibliography
- Index 更新時(shí)間:2021-07-02 20:09:52
推薦閱讀
- Building Computer Vision Projects with OpenCV 4 and C++
- 計(jì)算機(jī)綜合設(shè)計(jì)實(shí)驗(yàn)指導(dǎo)
- 從零開始學(xué)Hadoop大數(shù)據(jù)分析(視頻教學(xué)版)
- 大數(shù)據(jù)可視化
- Creating Mobile Apps with Sencha Touch 2
- WS-BPEL 2.0 Beginner's Guide
- Hadoop 3.x大數(shù)據(jù)開發(fā)實(shí)戰(zhàn)
- 新手學(xué)會(huì)計(jì)(2013-2014實(shí)戰(zhàn)升級(jí)版)
- Augmented Reality using Appcelerator Titanium Starter
- 中文版Access 2007實(shí)例與操作
- Python數(shù)據(jù)分析從小白到專家
- Visual Studio 2012 and .NET 4.5 Expert Development Cookbook
- 標(biāo)簽類目體系:面向業(yè)務(wù)的數(shù)據(jù)資產(chǎn)設(shè)計(jì)方法論
- Delphi High Performance
- 數(shù)據(jù)分析方法及應(yīng)用:基于SPSS和EXCEL環(huán)境
- 大數(shù)據(jù)用戶行為畫像分析實(shí)操指南
- Getting Started with Review Board
- 醫(yī)療大數(shù)據(jù)分析與應(yīng)用
- Computer Programming for Absolute Beginners
- 新基建:大數(shù)據(jù)中心時(shí)代
- 大學(xué)計(jì)算機(jī)應(yīng)用基礎(chǔ)上機(jī)實(shí)驗(yàn)指導(dǎo)(微課版)
- Oracle數(shù)據(jù)庫(kù)性能優(yōu)化方法論和最佳實(shí)踐
- MySQL運(yùn)維進(jìn)階指南
- SequoiaDB分布式數(shù)據(jù)庫(kù)權(quán)威指南
- Python:Advanced Predictive Analytics
- 數(shù)據(jù)庫(kù)技術(shù)及應(yīng)用
- 智能數(shù)據(jù)治理:基于大模型、知識(shí)圖譜
- 低代碼極速物聯(lián)網(wǎng)開發(fā)指南:基于阿里云IoT Studio快速構(gòu)建物聯(lián)網(wǎng)項(xiàng)目
- 涂抹Oracle:三思筆記之一步一步學(xué)Oracle
- 對(duì)比Excel,輕松學(xué)習(xí)Python數(shù)據(jù)分析(入職數(shù)據(jù)分析師系列)