舉報

會員
Keras 2.x Projects
Keras2.xProjectsexplainshowtoleveragethepowerofKerastobuildandtrainstate-of-the-artdeeplearningmodelsthroughaseriesofpracticalprojectsthatlookatarangeofreal-worldapplicationareas.Tobeginwith,youwillquicklysetupadeeplearningenvironmentbyinstallingtheKeraslibrary.Througheachoftheprojects,youwillexploreandlearntheadvancedconceptsofdeeplearningandwilllearnhowtocomputeandrunyourdeeplearningmodelsusingtheadvancedofferingsofKeras.Youwilltrainfully-connectedmultilayernetworks,convolutionalneuralnetworks,recurrentneuralnetworks,autoencodersandgenerativeadversarialnetworksusingreal-worldtrainingdatasets.Theprojectsyouwillundertakeareallbasedonreal-worldscenariosofallcomplexitylevels,coveringtopicssuchaslanguagerecognition,stockvolatility,energyconsumptionprediction,fasterobjectclassificationforself-drivingvehicles,andmore.Bytheendofthisbook,youwillbewellversedwithdeeplearninganditsimplementationwithKeras.Youwillhavealltheknowledgeyouneedtotrainyourowndeeplearningmodelstosolvedifferentkindsofproblems.
目錄(257章)
倒序
- coverpage
- Title Page
- Copyright and Credits
- Keras 2.x Projects
- About Packt
- Why subscribe?
- Packt.com
- Contributors
- About the author
- About the reviewer
- Packt is searching for authors like you
- Preface
- Who this book is for
- What this book covers
- To get the most out of this book
- Download the example code files
- Download the color images
- Conventions used
- Get in touch
- Reviews
- Getting Started with Keras
- Introduction to Keras
- Keras backend options
- TensorFlow
- Theano
- CNTK
- Installation
- Optional dependencies
- Installing the backend engine
- Keras installation and configuration
- Model fitting in Keras
- The Keras sequential model architecture
- Keras functional API model architecture
- Summary
- Modeling Real Estate Using Regression Analysis
- Defining a regression problem
- Basic regression concepts
- Different types of regression
- Creating a linear regression model
- Multiple linear regression concepts
- Neural networks for regression using Keras
- Exploratory analysis
- Data splitting
- Neural network Keras model
- Multiple linear regression model
- Summary
- Heart Disease Classification with Neural Networks
- Basics of classification problems
- Different types of classification
- Classification algorithms
- Naive Bayes algorithm
- Gaussian mixture models
- Discriminant analysis
- K-nearest neighbors
- Support vector machine
- Bayesian decision theory
- Bayes' theorem
- Pattern recognition using a Keras neural network
- Exploratory analysis
- Handling missing data in Python
- Data scaling
- Data visualization
- Keras binary classifier
- Summary
- Concrete Quality Prediction Using Deep Neural Networks
- Basic concepts of ANNs
- Architecture of ANNs
- Learning paradigms
- Supervised learning
- Unsupervised learning
- Semi-supervised learning
- Understanding the structure of neural networks
- Weights and biases
- Types of activation functions
- Unit step activation function
- Sigmoid
- Hyperbolic tangent
- Rectified linear unit
- Multilayer neural networks
- Implementing multilayer neural networks in Keras
- Exploratory analysis
- Data visualization
- Data scaling
- Building a Keras deep neural network model
- Improving the model performance by removing outliers
- Summary
- Fashion Article Recognition Using Convolutional Neural Networks
- Understanding computer vision concepts
- Convolutional neural networks
- Convolution layer
- Pooling layers
- Rectified linear units
- Fully connected layer
- Structure of a CNN
- Common CNN architecture
- LeNet-5
- AlexNet
- ResNet
- VGG Net
- GoogleNet
- Implementing a CNN for object recognition
- Exploratory analysis
- Data scaling
- Using Keras in the CNN model
- Exploring the model's results
- Summary
- Movie Reviews Sentiment Analysis Using Recurrent Neural Networks
- Sentiment analysis basic concepts
- Sentiment analysis techniques
- The next challenges for sentiment analysis
- Lexicon and semantics analysis
- Recurrent neural networks
- Fully recurrent neural networks
- Recursive neural networks
- Hopfield recurrent neural networks
- Elman neural networks
- Long short-term memory network
- Classifying sentiment in movie reviews using an RNN
- IMDB Movie reviews dataset
- Exploratory analysis
- Keras recurrent neural network model
- Exploring model results
- Summary
- Stock Volatility Forecasting Using Long Short-Term Memory
- The basics of forecasting
- Forecast horizon
- Forecasting methods
- Quantitative methods
- Qualitative methods
- Time series analysis
- The classical approach to time series
- Estimation of the trend component
- Estimating the seasonality component
- Time series models
- Autoregressive models
- Moving average models
- Autoregressive moving average model
- Autoregressive integrated moving average models
- Long short-term memory in Keras
- Implementing an LSTM to forecast stock volatility
- Exploratory analysis
- Data scaling
- Data splitting
- Keras LSTM model
- Summary
- Reconstruction of Handwritten Digit Images Using Autoencoders
- Basic concepts of image recognition
- Image digitization
- Image recognition
- Optical character recognition
- Approaches to the problem
- Generative neural networks
- The restricted Boltzmann machine
- Autoencoders
- Variational autoencoders
- The generative adversarial network
- The adversarial autoencoder
- The Keras autoencoders model
- Implementing autoencoder Keras layers to reconstruct handwritten digit images
- The MNIST dataset
- Min–max normalization
- Keras model architecture
- Exploring model results
- Summary
- Robot Control System Using Deep Reinforcement Learning
- Robot control overview
- Three laws of robotics
- Short robotics timeline
- First-generation robots
- Second-generation robots
- Third-generation robots
- Fourth-generation robots
- Automatic control
- The environment for controlling robot mobility
- OpenAI Gym
- Reinforcement learning basics
- Agent-environment interface
- Reinforcement learning algorithms
- Dynamic Programming
- Monte Carlo methods
- Temporal difference learning
- Keras DQNs
- Q-learning
- Deep Q-learning
- Keras-RL library
- DQN to control a robot's mobility
- OpenAI Gym installation and methods
- The CartPole system
- Q-learning solution
- Deep Q-learning solution
- Summary
- Reuters Newswire Topics Classifier in Keras
- Natural language processing
- NLP phases
- Morphology analysis
- Syntax analysis
- Semantic analysis
- Pragmatic analysis
- Automatic processing problems
- NLP applications
- Information retrieval
- Information extraction
- Question-answering
- Automatic summarization
- Automatic translation
- Sentiment analysis
- NLP methods
- Sentence splitting
- Tokenization
- Part-of-speech tagging
- Shallow parsing
- Named entity recognition
- Syntactic parsing
- Semantic role labeling
- Natural language processing tools
- The Natural Language Toolkit
- The Stanford NLP Group software
- Apache OpenNLP
- GATE
- The Natural Language Toolkit
- Getting started with the NLTK
- Corpora
- Brown corpus
- Word and sentence tokenize
- Part-of-speech tagger
- Stemming and lemmatization
- Stemming
- Lemmatization
- Implementing a DNN to label sentences
- Exploratory analysis
- Data preparation
- Keras deep neural network model
- Summary
- What is Next?
- Deep learning methods
- Deep feedforward network
- Convolutional neural networks
- Recurrent neural networks
- Long short-term memory
- Restricted Boltzmann machine
- Deep belief network
- Generative adversarial networks
- Automated machine learning
- Auto-Keras
- Google Cloud ML Engine
- Azure Machine Learning Studio
- Amazon Web Services
- Differentiable neural computer
- Genetic programming and evolutionary strategies
- Introducing the genetic algorithm
- The fitness function
- Selection
- Mutation
- Inverse reinforcement learning
- Summary
- Other Books You May Enjoy
- Leave a review - let other readers know what you think 更新時間:2021-07-02 14:37:02
推薦閱讀
- 電力自動化實用技術問答
- 21天學通PHP
- 工業機器人產品應用實戰
- 影視后期制作(Avid Media Composer 5.0)
- 深度學習中的圖像分類與對抗技術
- Lightning Fast Animation in Element 3D
- 步步圖解自動化綜合技能
- Enterprise PowerShell Scripting Bootcamp
- 水下無線傳感器網絡的通信與決策技術
- 傳感器與自動檢測
- Effective Business Intelligence with QuickSight
- 計算機應用基礎學習指導與練習(Windows XP+Office 2003)
- 工業機器人技術
- Office 2010輕松入門
- 數據庫技術:Access 2003·計算機網絡技術
- ABB工業機器人虛擬仿真教程
- 軟件設計
- 微機原理及接口技術
- 人工智能算法(卷2):受大自然啟發的算法
- Photoshop CS6婚紗數碼照片處理達人秘笈
- 黑客攻防實戰編程
- Mastering Docker Enterprise
- 數據庫應用基礎學習指導
- 工業控制系統及應用:SCADA系統篇(第2版)
- Java Web開發入行真功夫
- 精美PPT設計與演示
- PHP動態網站開發
- IBM Db2 11.1 Certification Guide
- 操作系統(第3版)
- 中國戰略性新興產業研究與發展·智慧工業