舉報(bào)

會(huì)員
Data Science for Marketing Analytics
最新章節(jié):
Chapter 9: Modeling Customer Choice
DataScienceforMarketingAnalyticscoverseverystageofdataanalytics,fromworkingwitharawdatasettosegmentingapopulationandmodelingdifferentpartsofthepopulationbasedonthesegments.ThebookstartsbyteachingyouhowtousePythonlibraries,suchaspandasandMatplotlib,toreaddatafromPython,manipulateit,andcreateplots,usingbothcategoricalandcontinuousvariables.Then,you'lllearnhowtosegmentapopulationintogroupsandusedifferentclusteringtechniquestoevaluatecustomersegmentation.Asyoumakeyourwaythroughthechapters,you'llexplorewaystoevaluateandselectthebestsegmentationapproach,andgoontocreatealinearregressionmodeloncustomervaluedatatopredictlifetimevalue.Intheconcludingchapters,you'llgainanunderstandingofregressiontechniquesandtoolsforevaluatingregressionmodels,andexplorewaystopredictcustomerchoiceusingclassificationalgorithms.Finally,you'llapplythesetechniquestocreateachurnmodelformodelingcustomerproductchoices.Bytheendofthisbook,youwillbeabletobuildyourownmarketingreportingandinteractivedashboardsolutions.
目錄(71章)
倒序
- 封面
- 版權(quán)頁(yè)
- Preface
- About the Book
- Chapter 1 Data Preparation and Cleaning
- Introduction
- Data Models and Structured Data
- pandas
- Data Manipulation
- Summary
- Chapter 2 Data Exploration and Visualization
- Introduction
- Identifying the Right Attributes
- Generating Targeted Insights
- Visualizing Data
- Summary
- Chapter 3 Unsupervised Learning: Customer Segmentation
- Introduction
- Customer Segmentation Methods
- Similarity and Data Standardization
- k-means Clustering
- Summary
- Chapter 4 Choosing the Best Segmentation Approach
- Introduction
- Choosing the Number of Clusters
- Different Methods of Clustering
- Evaluating Clustering
- Summary
- Chapter 5 Predicting Customer Revenue Using Linear Regression
- Introduction
- Understanding Regression
- Feature Engineering for Regression
- Performing and Interpreting Linear Regression
- Summary
- Chapter 6 Other Regression Techniques and Tools for Evaluation
- Introduction
- Evaluating the Accuracy of a Regression Model
- Using Regularization for Feature Selection
- Tree-Based Regression Models
- Summary
- Chapter 7 Supervised Learning: Predicting Customer Churn
- Introduction
- Classification Problems
- Understanding Logistic Regression
- Creating a Data Science Pipeline
- Modeling the Data
- Summary
- Chapter 8 Fine-Tuning Classification Algorithms
- Introduction
- Support Vector Machines
- Decision Trees
- Random Forest
- Preprocessing Data for Machine Learning Models
- Model Evaluation
- Performance Metrics
- Summary
- Chapter 9 Modeling Customer Choice
- Introduction
- Understanding Multiclass Classification
- Class Imbalanced Data
- Summary
- Appendix
- Chapter 1: Data Preparation and Cleaning
- Chapter 2: Data Exploration and Visualization
- Chapter 3: Unsupervised Learning: Customer Segmentation
- Chapter 4: Choosing the Best Segmentation Approach
- Chapter 5: Predicting Customer Revenue Using Linear Regression
- Chapter 6: Other Regression Techniques and Tools for Evaluation
- Chapter 7: Supervised Learning: Predicting Customer Churn
- Chapter 8: Fine-Tuning Classification Algorithms
- Chapter 9: Modeling Customer Choice 更新時(shí)間:2021-06-11 13:46:13
推薦閱讀
- Getting Started with Clickteam Fusion
- 7天精通Dreamweaver CS5網(wǎng)頁(yè)設(shè)計(jì)與制作
- 計(jì)算機(jī)應(yīng)用復(fù)習(xí)與練習(xí)
- 機(jī)器自動(dòng)化控制器原理與應(yīng)用
- 21天學(xué)通ASP.NET
- 大數(shù)據(jù)安全與隱私保護(hù)
- Apache Spark Deep Learning Cookbook
- 計(jì)算機(jī)系統(tǒng)結(jié)構(gòu)
- 塊數(shù)據(jù)5.0:數(shù)據(jù)社會(huì)學(xué)的理論與方法
- 信息物理系統(tǒng)(CPS)測(cè)試與評(píng)價(jià)技術(shù)
- Kubernetes for Developers
- 工業(yè)機(jī)器人安裝與調(diào)試
- Building Google Cloud Platform Solutions
- 智慧未來(lái)
- 工業(yè)機(jī)器人集成應(yīng)用
- 計(jì)算機(jī)應(yīng)用基礎(chǔ)實(shí)訓(xùn)(職業(yè)模塊)
- Cortex-M3嵌入式處理器原理與應(yīng)用
- Linux常用命令簡(jiǎn)明手冊(cè)
- 工業(yè)機(jī)器人編程指令詳解
- ASP.NET 4.0 MVC敏捷開發(fā)給力起飛
- 中文版Photoshop CS6數(shù)碼照片處理高手速成
- 大學(xué)計(jì)算機(jī)實(shí)踐教程
- 網(wǎng)絡(luò)工程師必讀:網(wǎng)絡(luò)安全系統(tǒng)設(shè)計(jì)
- Talend for Big Data
- 智能傳感器理論基礎(chǔ)及應(yīng)用
- 深度學(xué)習(xí):語(yǔ)音識(shí)別技術(shù)實(shí)踐
- 單片機(jī)原理及應(yīng)用技術(shù)
- 人工智能大冒險(xiǎn):青少年的AI啟蒙書
- Internet應(yīng)用(第4版)上機(jī)指導(dǎo)與練習(xí)
- 機(jī)械識(shí)圖與AutoCAD技術(shù)基礎(chǔ)(2006版)