舉報

會員
Machine Learning for Data Mining
Machinelearning(ML)combinedwithdataminingcangiveyouamazingresultsinyourdataminingworkbyempoweringyouwithseveralwaystolookatdata.Thisbookwillhelpyouimproveyourdataminingtechniquesbyusingsmartmodelingtechniques.ThisbookwillteachyouhowtoimplementMLalgorithmsandtechniquesinyourdataminingwork.Itwillenableyoutopairthebestalgorithmswiththerighttoolsandprocesses.Youwilllearnhowtoidentifypatternsandmakepredictionswithminimalhumanintervention.YouwillbuilddifferenttypesofMLmodels,suchastheneuralnetwork,theSupportVectorMachines(SVMs),andtheDecisiontree.Youwillseehowallofthesemodelsworksandwhatkindofdatainthedatasettheyaresuitedfor.Youwilllearnhowtocombinetheresultsofdifferentmodelsinordertoimproveaccuracy.Topicssuchasremovingnoiseandhandlingerrorswillgiveyouanaddededgeinmodelbuildingandoptimization.Bytheendofthisbook,youwillbeabletobuildpredictivemodelsandextractinformationofinterestfromthedataset
目錄(89章)
倒序
- coverpage
- Title Page
- Copyright and Credits
- Machine Learning for Data Mining
- Contributors
- About the author
- Packt is searching for authors like you
- About Packt
- Why subscribe?
- Packt.com
- Preface
- Who this book is for
- What this book covers
- To get the most out of this book
- Download the example code files
- Download the color images
- Conventions used
- Get in touch
- Reviews
- Introducing Machine Learning Predictive Models
- Characteristics of machine learning predictive models
- Types of machine learning predictive models
- Working with neural networks
- Advantages of neural networks
- Disadvantages of neural networks
- Representing the errors
- Types of neural network models
- Multi-layer perceptron
- Why are weights important?
- An example representation of a multilayer perceptron model
- The linear regression model
- A sample neural network model
- Feed-forward backpropagation
- Model training ethics
- Summary
- Getting Started with Machine Learning
- Demonstrating a neural network
- Running a neural network model
- Interpreting results
- Analyzing the accuracy of the model
- Model performance on testing partition
- Support Vector Machines
- Working with Support Vector Machines
- Kernel transformation
- But what is the best solution?
- Types of kernel functions
- Demonstrating SVMs
- Interpreting the results
- Trying additional solutions
- Summary
- Understanding Models
- Models
- Statistical models
- Decision tree models
- Machine learning models
- Using graphs to interpret machine learning models
- Using statistics to interpret machine learning models
- Understanding the relationship between a continuous predictor and a categorical outcome variable
- Using decision trees to interpret machine learning models
- Summary
- Improving Individual Models
- Modifying model options
- Using a different model to improve results
- Removing noise to improve models
- How to remove noise
- Doing additional data preparation
- Preparing the data
- Balancing data
- The need for balancing data
- Implementing balance in data
- Summary
- Advanced Ways of Improving Models
- Combining models
- Combining by voting
- Combining by highest confidence
- Implementing combining models
- Combining models in Modeler
- Combining models outside Modeler
- Using propensity scores
- Implementations of propensity scores
- Meta-level modeling
- Error modeling
- Boosting and bagging
- Boosting
- Bagging
- Predicting continuous outcomes
- Summary
- Other Books You May Enjoy
- Leave a review - let other readers know what you think 更新時間:2021-06-24 14:50:49
推薦閱讀
- 電氣自動化專業英語(第3版)
- Hands-On Artificial Intelligence on Amazon Web Services
- 網絡服務器架設(Windows Server+Linux Server)
- Linux Mint System Administrator’s Beginner's Guide
- 程序設計語言與編譯
- 數據產品經理:解決方案與案例分析
- 大數據平臺異常檢測分析系統的若干關鍵技術研究
- 網絡化分布式系統預測控制
- Prometheus監控實戰
- 西門子變頻器技術入門及實踐
- Statistics for Data Science
- 自動化生產線安裝與調試(三菱FX系列)(第二版)
- C#求職寶典
- 計算機應用基礎實訓(職業模塊)
- 30天學通Java Web項目案例開發
- 電氣控制及Micro800 PLC程序設計
- WPF專業編程指南
- 小數據之美:精準捕捉未來的商業小趨勢
- Geospatial Data Science Quick Start Guide
- 智能機器人:從“深藍”到AlphaGo
- 從0到1 TensorFlow編程手記
- 圖解變頻器維修
- 微機原理與應用
- 可解釋機器學習:黑盒模型可解釋性理解指南
- Implementing Azure Cloud Design Patterns
- 電氣控制及PLC技術:羅克韋爾Micro800系列
- 圖解傳感器與儀表應用(第2版)
- 特效制作
- Flink基礎教程
- Practical DevOps