舉報

會員
Applied Unsupervised Learning with Python
Unsupervisedlearningisausefulandpracticalsolutioninsituationswherelabeleddataisnotavailable.AppliedUnsupervisedLearningwithPythonguidesyouonthebestpracticesforusingunsupervisedlearningtechniquesintandemwithPythonlibrariesandextractingmeaningfulinformationfromunstructureddata.Thecoursebeginsbyexplaininghowbasicclusteringworkstofindsimilardatapointsinaset.Onceyouarewellversedwiththek-meansalgorithmandhowitoperates,you’lllearnwhatdimensionalityreductionisandwheretoapplyit.Asyouprogress,you’lllearnvariousneuralnetworktechniquesandhowtheycanimproveyourmodel.Whilestudyingtheapplicationsofunsupervisedlearning,youwillalsounderstandhowtominetopicsthataretrendingonTwitterandFacebookandbuildanewsrecommendationengineforusers.YouwillcompletethecoursebychallengingyourselfthroughvariousinterestingactivitiessuchasperformingaMarketBasketAnalysisandidentifyingrelationshipsbetweendifferentmerchandises.Bytheendofthiscourse,youwillhavetheskillsyouneedtoconfidentlybuildyourownmodelsusingPython.
目錄(70章)
倒序
- 封面
- 版權頁
- Preface
- About
- About the Book
- Chapter 1 Introduction to Clustering
- Introduction
- Unsupervised Learning versus Supervised Learning
- Clustering
- Introduction to k-means Clustering
- Summary
- Chapter 2 Hierarchical Clustering
- Introduction
- Clustering Refresher
- The Organization of Hierarchy
- Introduction to Hierarchical Clustering
- Linkage
- Agglomerative versus Divisive Clustering
- k-means versus Hierarchical Clustering
- Summary
- Chapter 3 Neighborhood Approaches and DBSCAN
- Introduction
- Introduction to DBSCAN
- DBSCAN Versus k-means and Hierarchical Clustering
- Summary
- Chapter 4 Dimension Reduction and PCA
- Introduction
- Overview of Dimensionality Reduction Techniques
- PCA
- Summary
- Chapter 5 Autoencoders
- Introduction
- Fundamentals of Artificial Neural Networks
- Autoencoders
- Summary
- Chapter 6 t-Distributed Stochastic Neighbor Embedding (t-SNE)
- Introduction
- Stochastic Neighbor Embedding (SNE)
- t-Distributed SNE
- Interpreting t-SNE Plots
- Summary
- Chapter 7 Topic Modeling
- Introduction
- Cleaning Text Data
- Latent Dirichlet Allocation
- Non-Negative Matrix Factorization
- Summary
- Chapter 8 Market Basket Analysis
- Introduction
- Market Basket Analysis
- Characteristics of Transaction Data
- Apriori Algorithm
- Association Rules
- Summary
- Chapter 9 Hotspot Analysis
- Introduction
- Kernel Density Estimation
- Hotspot Analysis
- Summary
- Appendix
- About
- Chapter 1: Introduction to Clustering
- Chapter 2: Hierarchical Clustering
- Chapter 3: Neighborhood Approaches and DBSCAN
- Chapter 4: Dimension Reduction and PCA
- Chapter 5: Autoencoders
- Chapter 6: t-Distributed Stochastic Neighbor Embedding (t-SNE)
- Chapter 7: Topic Modeling
- Chapter 8: Market Basket Analysis
- Chapter 9: Hotspot Analysis 更新時間:2021-06-11 13:24:17
推薦閱讀
- Moodle Administration Essentials
- JavaScript高效圖形編程
- Instant Zepto.js
- Java 9 Programming Blueprints
- 數據結構與算法JavaScript描述
- Scratch真好玩:教小孩學編程
- C語言程序設計
- SharePoint Development with the SharePoint Framework
- Building an RPG with Unity 2018
- SQL Server 2016數據庫應用與開發
- Learning Hadoop 2
- Java EE 7 with GlassFish 4 Application Server
- 計算機應用基礎(Windows 7+Office 2010)
- R語言與網站分析
- Swift從入門到精通 (移動開發叢書)
- Python編程基礎
- Java 開發從入門到精通
- PHP程序員面試算法寶典
- 自然語言處理NLP從入門到項目實戰:Python語言實現
- HoloLens Blueprints
- Professional Azure SQL Database Administration
- Learning Puppet for Windows Server
- SpringBoot+Vue.js+分布式組件全棧開發訓練營(視頻教學版)
- PostgreSQL 9 High Availability Cookbook
- Visual Basic數據庫開發全程指南
- C#程序設計教程
- Android Studio 2 Essentials(Second Edition)
- ThinkPHP實戰
- Excel 2010 VBA編程與實踐
- JavaEE主流開源框架