舉報

會員
Hands-On Natural Language Processing with PyTorch 1.x
Intheinternetage,whereanincreasingvolumeoftextdataisgenerateddailyfromsocialmediaandotherplatforms,beingabletomakesenseofthatdataisacrucialskill.Withthisbook,you’lllearnhowtoextractvaluableinsightsfromtextbybuildingdeeplearningmodelsfornaturallanguageprocessing(NLP)tasks.StartingbyunderstandinghowtoinstallPyTorchandusingCUDAtoacceleratetheprocessingspeed,you’llexplorehowtheNLParchitectureworkswiththehelpofpracticalexamples.ThisPyTorchNLPbookwillguideyouthroughcoreconceptssuchaswordembeddings,CBOW,andtokenizationinPyTorch.You’llthenlearntechniquesforprocessingtextualdataandseehowdeeplearningcanbeusedforNLPtasks.Thebookdemonstrateshowtoimplementdeeplearningandneuralnetworkarchitecturestobuildmodelsthatwillallowyoutoclassifyandtranslatetextandperformsentimentanalysis.Finally,you’lllearnhowtobuildadvancedNLPmodels,suchasconversationalchatbots.Bytheendofthisbook,you’llnotonlyhaveunderstoodthedifferentNLPproblemsthatcanbesolvedusingdeeplearningwithPyTorch,butalsobeabletobuildmodelstosolvethem.
目錄(67章)
倒序
- 封面
- 版權信息
- Contributors About the author
- About the reviewers
- Packt is searching for authors like you
- Preface
- Section 1: Essentials of PyTorch 1.x for NLP
- Chapter 1: Fundamentals of Machine Learning and Deep Learning
- Overview of machine learning
- Neural networks
- NLP for machine learning
- Summary
- Chapter 2: Getting Started with PyTorch 1.x for NLP
- Technical requirements
- Installing and using PyTorch 1.x
- Enabling PyTorch acceleration using CUDA
- Comparing PyTorch to other deep learning frameworks
- Building a simple neural network in PyTorch
- NLP for PyTorch
- Summary
- Section 2: Fundamentals of Natural Language Processing
- In this section……
- Chapter 3: NLP and Text Embeddings
- Technical requirements
- Embeddings for NLP
- Exploring CBOW
- Exploring n-grams
- Tokenization
- Tagging and chunking for parts of speech
- TF-IDF
- Summary
- Chapter 4: Text Preprocessing Stemming and Lemmatization
- Technical requirements
- Text preprocessing
- Stemming and lemmatization
- Uses of stemming and lemmatization
- Summary
- Section 3: Real-World NLP Applications Using PyTorch 1.x
- Chapter 5: Recurrent Neural Networks and Sentiment Analysis
- Technical requirements
- Building RNNs
- Introducing LSTMs
- Building a sentiment analyzer using LSTMs
- Deploying the application on Heroku
- Summary
- Chapter 6: Convolutional Neural Networks for Text Classification
- Technical requirements
- Exploring CNNs
- Building a CNN for text classification
- Summary
- Chapter 7: Text Translation Using Sequence-to-Sequence Neural Networks
- Technical requirements
- Theory of sequence-to-sequence models
- Building a sequence-to-sequence model for text translation
- Next steps
- Summary
- Chapter 8: Building a Chatbot Using Attention-Based Neural Networks
- Technical requirements
- The theory of attention within neural networks
- Building a chatbot using sequence-to-sequence neural networks with attention
- Summary
- Chapter 9: The Road Ahead
- Exploring state-of-the-art NLP machine learning
- Future NLP tasks
- Summary
- Other Books You May Enjoy
- Leave a review - let other readers know what you think 更新時間:2022-08-25 16:45:32
推薦閱讀
- 電腦維護與故障排除傻瓜書(Windows 10適用)
- 深入淺出SSD:固態存儲核心技術、原理與實戰(第2版)
- 數字邏輯(第3版)
- Arduino BLINK Blueprints
- Machine Learning with Go Quick Start Guide
- VMware Workstation:No Experience Necessary
- BeagleBone Robotic Projects
- 無蘋果不生活:OS X Mountain Lion 隨身寶典
- 單片機技術及應用
- 新編電腦組裝與硬件維修從入門到精通
- STM32自學筆記
- FPGA實驗實訓教程
- Raspberry Pi Home Automation with Arduino
- 筆記本電腦的結構、原理與維修
- Hands-On One-shot Learning with Python
- Hands-On Markov Models with Python
- CPU設計實戰:LoongArch版
- 電腦組裝與硬件維修從入門到精通
- 計算機組裝與維修學習指導與練習
- Avid Media Composer 6.x Cookbook
- Vue.js 3 Cookbook
- 89C51單片機實用教程
- Blender Cycles:Lighting and Rendering Cookbook
- Ouya Unity Game Development
- 主板維修從入門到精通
- 單片機技術與項目實踐
- 電腦組裝與維修從入門到精通
- The Unsupervised Learning Workshop
- MQTT Essentials:A Lightweight IoT Protocol
- 零基礎學電子與Arduino:給編程新手的開發板入門指南(全彩圖解)