舉報

會員
The Deep Learning with PyTorch Workshop
Wanttogettogripswithoneofthemostpopularmachinelearninglibrariesfordeeplearning?TheDeepLearningwithPyTorchWorkshopwillhelpyoudojustthat,jumpstartingyourknowledgeofusingPyTorchfordeeplearningevenifyou’restartingfromscratch.It'snosurprisethatdeeplearning'spopularityhasrisensteeplyinthepastfewyears,thankstointelligentapplicationssuchasself-drivingvehicles,chatbots,andvoice-activatedassistantsthataremakingourliveseasier.Thisbookwilltakeyouinsidetheworldofdeeplearning,whereyou'llusePyTorchtounderstandthecomplexityofneuralnetworkarchitectures.TheDeepLearningwithPyTorchWorkshopstartswithanintroductiontodeeplearninganditsapplications.You'llexplorethesyntaxofPyTorchandlearnhowtodefineanetworkarchitectureandtrainamodel.Next,you'lllearnaboutthreemainneuralnetworkarchitectures-convolutional,artificial,andrecurrent-andevensolvereal-worlddataproblemsusingthesenetworks.Laterchapterswillshowyouhowtocreateastyletransfermodeltodevelopanewimagefromtwoimages,beforefinallytakingyouthroughhowRNNsstorememorytosolvekeydataissues.Bytheendofthisbook,you'llhavemasteredtheessentialconcepts,tools,andlibrariesofPyTorchtodevelopyourowndeepneuralnetworksandintelligentapps.
目錄(47章)
倒序
- 封面
- 版權信息
- Experience the Workshop Online
- Preface
- 1. Introduction to Deep Learning and PyTorch
- Introduction
- Why Deep Learning?
- Introduction to PyTorch
- Summary
- 2. Building Blocks of Neural Networks
- Introduction
- Introduction to Neural Networks
- Data Preparation
- Building a Deep Neural Network
- Summary
- 3. A Classification Problem Using DNN
- Introduction
- Problem Definition
- Dealing with an Underfitted or Overfitted Model
- Deploying Your Model
- Summary
- 4. Convolutional Neural Networks
- Introduction
- Building a CNN
- Data Augmentation
- Batch Normalization
- Summary
- 5. Style Transfer
- Introduction
- Style Transfer
- Implementation of Style Transfer Using the VGG-19 Network Architecture
- Summary
- 6. Analyzing the Sequence of Data with RNNs
- Introduction
- Recurrent Neural Networks
- Long Short-Term Memory Networks
- LSTM Networks in PyTorch
- Natural Language Processing
- Sentiment Analysis in PyTorch
- Summary
- Appendix
- 1. Introduction to Deep Learning and PyTorch
- 2. Building Blocks of Neural Networks
- 3. A Classification Problem Using DNNs
- 4. Convolutional Neural Networks
- 5. Style Transfer
- 6. Analyzing the Sequence of Data with RNNs 更新時間:2021-06-18 18:22:35
推薦閱讀
- 24小時學會電腦組裝與維護
- 極簡Spring Cloud實戰
- 現代辦公設備使用與維護
- 電腦常見故障現場處理
- Mastering Manga Studio 5
- 微服務分布式架構基礎與實戰:基于Spring Boot + Spring Cloud
- Apple Motion 5 Cookbook
- Visual Media Processing Using Matlab Beginner's Guide
- 面向對象分析與設計(第3版)(修訂版)
- 微型計算機系統原理及應用:國產龍芯處理器的軟件和硬件集成(基礎篇)
- Hands-On Artificial Intelligence for Banking
- 無蘋果不生活:OS X Mountain Lion 隨身寶典
- Arduino項目開發:智能生活
- FPGA實驗實訓教程
- 可編程邏輯器件項目開發設計
- 微服務實戰(Dubbox +Spring Boot+Docker)
- USB應用開發寶典
- 計算機組裝與維護(慕課版)
- Corona SDK Mobile Game Development:Beginner's Guide
- Raspberry Pi Home Automation with Arduino
- 主板維修實踐技術
- 3D打印:Geomagic Design X5.1 逆向建模設計實用教程
- 三菱FX2N系列PLC入門與應用實例
- 數字噴墨與應用
- 89C51單片機實用教程
- 主板維修從入門到精通
- 可編程序控制器應用技術(第3版)
- 通用源碼閱讀指導書:MyBatis源碼詳解
- 量子霸權
- CXL體系結構:高速互連的原理解析與實踐