舉報

會員
The Deep Learning with PyTorch Workshop
最新章節(jié):
6. Analyzing the Sequence of Data with RNNs
Wanttogettogripswithoneofthemostpopularmachinelearninglibrariesfordeeplearning?TheDeepLearningwithPyTorchWorkshopwillhelpyoudojustthat,jumpstartingyourknowledgeofusingPyTorchfordeeplearningevenifyou’restartingfromscratch.It'snosurprisethatdeeplearning'spopularityhasrisensteeplyinthepastfewyears,thankstointelligentapplicationssuchasself-drivingvehicles,chatbots,andvoice-activatedassistantsthataremakingourliveseasier.Thisbookwilltakeyouinsidetheworldofdeeplearning,whereyou'llusePyTorchtounderstandthecomplexityofneuralnetworkarchitectures.TheDeepLearningwithPyTorchWorkshopstartswithanintroductiontodeeplearninganditsapplications.You'llexplorethesyntaxofPyTorchandlearnhowtodefineanetworkarchitectureandtrainamodel.Next,you'lllearnaboutthreemainneuralnetworkarchitectures-convolutional,artificial,andrecurrent-andevensolvereal-worlddataproblemsusingthesenetworks.Laterchapterswillshowyouhowtocreateastyletransfermodeltodevelopanewimagefromtwoimages,beforefinallytakingyouthroughhowRNNsstorememorytosolvekeydataissues.Bytheendofthisbook,you'llhavemasteredtheessentialconcepts,tools,andlibrariesofPyTorchtodevelopyourowndeepneuralnetworksandintelligentapps.
目錄(47章)
倒序
- 封面
- 版權(quán)信息
- Experience the Workshop Online
- Preface
- 1. Introduction to Deep Learning and PyTorch
- Introduction
- Why Deep Learning?
- Introduction to PyTorch
- Summary
- 2. Building Blocks of Neural Networks
- Introduction
- Introduction to Neural Networks
- Data Preparation
- Building a Deep Neural Network
- Summary
- 3. A Classification Problem Using DNN
- Introduction
- Problem Definition
- Dealing with an Underfitted or Overfitted Model
- Deploying Your Model
- Summary
- 4. Convolutional Neural Networks
- Introduction
- Building a CNN
- Data Augmentation
- Batch Normalization
- Summary
- 5. Style Transfer
- Introduction
- Style Transfer
- Implementation of Style Transfer Using the VGG-19 Network Architecture
- Summary
- 6. Analyzing the Sequence of Data with RNNs
- Introduction
- Recurrent Neural Networks
- Long Short-Term Memory Networks
- LSTM Networks in PyTorch
- Natural Language Processing
- Sentiment Analysis in PyTorch
- Summary
- Appendix
- 1. Introduction to Deep Learning and PyTorch
- 2. Building Blocks of Neural Networks
- 3. A Classification Problem Using DNNs
- 4. Convolutional Neural Networks
- 5. Style Transfer
- 6. Analyzing the Sequence of Data with RNNs 更新時間:2021-06-18 18:22:35
推薦閱讀
- Python GUI Programming:A Complete Reference Guide
- 電腦維護與故障排除傻瓜書(Windows 10適用)
- INSTANT Wijmo Widgets How-to
- The Applied AI and Natural Language Processing Workshop
- Machine Learning with Go Quick Start Guide
- Blender Quick Start Guide
- 單片機開發(fā)與典型工程項目實例詳解
- “硬”核:硬件產(chǎn)品成功密碼
- STM32自學(xué)筆記
- 創(chuàng)客電子:Arduino和Raspberry Pi智能制作項目精選
- 現(xiàn)代多媒體技術(shù)及應(yīng)用
- 詳解FPGA:人工智能時代的驅(qū)動引擎
- Hands-On One-shot Learning with Python
- Exceptional C++:47個C++工程難題、編程問題和解決方案(中文版)
- Learn Qt 5
- PLC技術(shù)實用教程
- Arduino項目開發(fā):智能控制
- 101 UX Principles
- Hands-On Explainable AI(XAI) with Python
- 三菱FX2N系列PLC入門與應(yīng)用實例
- 現(xiàn)場總線技術(shù)及應(yīng)用
- 數(shù)字噴墨與應(yīng)用
- 51單片機典型模塊開發(fā)查詢手冊
- 機房工程設(shè)計施工與管理維護技術(shù)
- Arduino Android Blueprints
- CPU自制入門
- 可編程序控制器應(yīng)用技術(shù)(第3版)
- MQTT Essentials:A Lightweight IoT Protocol
- OpenSceneGraph 3 Cookbook
- 青雨紅顏:Photoshop古風(fēng)水彩CG插畫繪制技法