官术网_书友最值得收藏!

Table chart

A table chart combines a bar chart and a table. In order to understand the table chart, let's consider the following dataset. Consider standard LED bulbs that come in different wattages. The standard Philips LED bulb can be 4.5 Watts, 6 Watts, 7 Watts, 8.5 Watts, 9.5 Watts, 13.5 Watts, and 15 Watts. Let's assume there are two categorical variables, the year and the wattage, and a numeric variable, which is the number of units sold in a particular year.

Now, let's declare variables to hold the years and the available wattage data. It can be done as shown in the following snippet:

# Years under consideration
years = ["2010", "2011", "2012", "2013", "2014"]

# Available watt
columns = ['4.5W', '6.0W', '7.0W','8.5W','9.5W','13.5W','15W']
unitsSold = [
[65, 141, 88, 111, 104, 71, 99],
[85, 142, 89, 112, 103, 73, 98],
[75, 143, 90, 113, 89, 75, 93],
[65, 144, 91, 114, 90, 77, 92],
[55, 145, 92, 115, 88, 79, 93],
]

# Define the range and scale for the y axis
values = np.arange(0, 600, 100)

We have now prepared the dataset. Let's now try to draw a table chart using the following code block:

colors = plt.cm.OrRd(np.linspace(0, 0.7, len(years)))
index = np.arange(len(columns)) + 0.3
bar_width = 0.7

y_offset = np.zeros(len(columns))
fig, ax = plt.subplots()

cell_text = []

n_rows = len(unitsSold)
for row in range(n_rows):
plot = plt.bar(index, unitsSold[row], bar_width, bottom=y_offset,
color=colors[row])
y_offset = y_offset + unitsSold[row]
cell_text.append(['%1.1f' % (x) for x in y_offset])
i=0
# Each iteration of this for loop, labels each bar with corresponding value for the given year
for rect in plot:
height = rect.get_height()
ax.text(rect.get_x() + rect.get_width()/2, y_offset[i],'%d'
% int(y_offset[i]),
ha='center', va='bottom')
i = i+1

Finally, let's add the table to the bottom of the chart:

# Add a table to the bottom of the axes
the_table = plt.table(cellText=cell_text, rowLabels=years,
rowColours=colors, colLabels=columns, loc='bottom')
plt.ylabel("Units Sold")
plt.xticks([])
plt.title('Number of LED Bulb Sold/Year')
plt.show()

The preceding code snippets generate a nice table chart, as follows:

Look at the preceding table chart. Do you think it can be easily interpreted? It is pretty clear, right? You can see, for example, in the year 2014, 345 units of the 4.5-Watt bulb were sold. Similarly, the same information can be deduced from the preceding table plot. 

主站蜘蛛池模板: 海宁市| 阜新| 梁山县| 宜君县| 都江堰市| 武安市| 道真| 红安县| 鹿邑县| 三河市| 米脂县| 华坪县| 清丰县| 闸北区| 尖扎县| 神农架林区| 彭山县| 泰顺县| 高要市| 徐汇区| 安徽省| 岗巴县| 台安县| 井研县| 柳林县| 喀什市| 手机| 泗阳县| 谢通门县| 宜宾市| 湖北省| 台山市| 玛曲县| 且末县| 南和县| 扎鲁特旗| 定南县| 永州市| 台中县| 黔东| 云梦县|