官术网_书友最值得收藏!

Table chart

A table chart combines a bar chart and a table. In order to understand the table chart, let's consider the following dataset. Consider standard LED bulbs that come in different wattages. The standard Philips LED bulb can be 4.5 Watts, 6 Watts, 7 Watts, 8.5 Watts, 9.5 Watts, 13.5 Watts, and 15 Watts. Let's assume there are two categorical variables, the year and the wattage, and a numeric variable, which is the number of units sold in a particular year.

Now, let's declare variables to hold the years and the available wattage data. It can be done as shown in the following snippet:

# Years under consideration
years = ["2010", "2011", "2012", "2013", "2014"]

# Available watt
columns = ['4.5W', '6.0W', '7.0W','8.5W','9.5W','13.5W','15W']
unitsSold = [
[65, 141, 88, 111, 104, 71, 99],
[85, 142, 89, 112, 103, 73, 98],
[75, 143, 90, 113, 89, 75, 93],
[65, 144, 91, 114, 90, 77, 92],
[55, 145, 92, 115, 88, 79, 93],
]

# Define the range and scale for the y axis
values = np.arange(0, 600, 100)

We have now prepared the dataset. Let's now try to draw a table chart using the following code block:

colors = plt.cm.OrRd(np.linspace(0, 0.7, len(years)))
index = np.arange(len(columns)) + 0.3
bar_width = 0.7

y_offset = np.zeros(len(columns))
fig, ax = plt.subplots()

cell_text = []

n_rows = len(unitsSold)
for row in range(n_rows):
plot = plt.bar(index, unitsSold[row], bar_width, bottom=y_offset,
color=colors[row])
y_offset = y_offset + unitsSold[row]
cell_text.append(['%1.1f' % (x) for x in y_offset])
i=0
# Each iteration of this for loop, labels each bar with corresponding value for the given year
for rect in plot:
height = rect.get_height()
ax.text(rect.get_x() + rect.get_width()/2, y_offset[i],'%d'
% int(y_offset[i]),
ha='center', va='bottom')
i = i+1

Finally, let's add the table to the bottom of the chart:

# Add a table to the bottom of the axes
the_table = plt.table(cellText=cell_text, rowLabels=years,
rowColours=colors, colLabels=columns, loc='bottom')
plt.ylabel("Units Sold")
plt.xticks([])
plt.title('Number of LED Bulb Sold/Year')
plt.show()

The preceding code snippets generate a nice table chart, as follows:

Look at the preceding table chart. Do you think it can be easily interpreted? It is pretty clear, right? You can see, for example, in the year 2014, 345 units of the 4.5-Watt bulb were sold. Similarly, the same information can be deduced from the preceding table plot. 

主站蜘蛛池模板: 清新县| 刚察县| 四会市| 阳江市| 屏东县| 盱眙县| 平塘县| 潢川县| 南澳县| 武城县| 遂川县| 晋城| 阿拉尔市| 巴塘县| 许昌市| 江西省| 长垣县| 象山县| 虹口区| 五莲县| 清远市| 邵阳市| 朝阳区| 年辖:市辖区| 凯里市| 璧山县| 蕲春县| 景谷| 长治市| 沐川县| 洛川县| 土默特右旗| 正蓝旗| 怀宁县| 栾城县| 都安| 宁海县| 崇信县| 炉霍县| 吴堡县| 乐亭县|