- 固體氧化物燃料電池?cái)?shù)值建模與仿真技術(shù)
- 陳代芬 李潔 張宏哲
- 1422字
- 2021-12-24 17:34:42
參考文獻(xiàn)
[1] Stamenkovic V R,Strmcnik D,Lopes P P,et al.Energy and fuels from electrochemical interfaces.Nat?Mater,2016,16(1):57?69.
[2] Nishida R T,Beale S B,Pharoah J G,et al.Three?dimensional computational fluid dynamics modelling and experimental validation of the Jülich Mark?F solid oxide fuel cell stack.Journal?of?Power?Sources,2018,373:203?210.
[3] Chen D F,Lin Z J,Zhu H Y,Kee R J.Percolation theory to predict effective properties of solid oxide fuel?cell composite electrodes.J?Power?Sources,2009,191:240?252.
[4] Papurello D,Lanzini A,Tognana L,et al.Waste to energy:exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell(SOFC) stack.Energy,2015, 85:145?158.
[5] Ai N,Lu Z,Tang J K,et al.Improvement of output performance of solid oxide fuel cell by optimizing Ni/samaria?doped ceria anode functional layer.Journal?of?Power?Sources,2008, 185(1):153?158.
[6] White B M,Lundberg W L,Pierre J F.Accomplishments, status, and roadmap for the US Department of Energy’s Fossil Energy SOFC program,?ECS?Trans,68(2015):23?38.
[7] Zhao F,Virkar A V.Dependence of polarization in anode?supported solid oxide fuel cells on various cell parameters.Journal?of?Power?Sources,2005, 141(1):79?95.
[8] Sunde S.Calculation of Conductivity and Polarization Resistance of Composite SOFC Electrodes from Random Resistor Networks.Journal?of?the?Electrochemical?Society,1995, 142(4):L50?L52.
[9] Kenjo T,Osawa S,Fujikawa K. High?Temperature Air Cathodes Containing Ion Conductive Oxides.Journal?of?the?Electrochemical?Society,1991, 138(2):349?355.
[10] Joshi A S,Grew K N,Izzo Jr J R,et al.Lattice Boltzmann Modeling of Three?Dimensional, Multicomponent Mass Diffusion in a Solid Oxide Fuel Cell Anode.Journal?of?Fuel?Cell?Science?and?Technology,2010, 7:011006.
[11] Kenney B,Valdmanis M,Baker C,et al.Computation of TPB length, surface area and pore size from numerical reconstruction of composite solid oxide fuel cell electrodes.Journal?of?Power?Sources,2009, 189(2):1051?1059.
[12] Wilson J R,Kobsiriphat W,Mendoza R,et al.Three?dimensional reconstruction of a solid?oxide fuel?cell anode.Nature?Materials,2006, 5(7):541?544.
[13] Blum L,Meulenberg W A,Nabielek H,et al.Worldwide SOFC technology overview and benchmark.International?Journal?of?Applied?Ceramic?Technology,2005, 2(6):482?492.
[14] Hirata H,Hori M.Gas?flow uniformity and cell performance in a molten carbonate fuel cell stack.Journal?of?Power?Sources,1996, 63(1):115?120.
[15] Yoshida H,Yakabe H,Ogasawara K,et al.Development of envelope?type solid oxide fuel cell stacks.Journal?of?Power?Sources,2006, 157(2):775?781.
[16] Duquette J,Petric A.Silver wire seal design for planar solid oxide fuel cell stack.Journal?of?Power?Sources,2004, 137:71?75.
[17] Chyou Y P,Chung T D,Chen J S,et al.Integrated thermal engineering analyses with heat transfer at periphery of planar solid oxide fuel cell.Journal?of?Power?Sources,2005, 139(1?2):126?140.
[18] Steinberger?Wilckens R.In Overview?of?Solid?Oxide?Fuel?Cell?Development?at?FZJ, Fundamentals and Developments of Fuel Cell Conference 2008, Nancy, France, 10?12.Dec.2008.
[19] Chen D,Zeng Q,Su S,et al.Geometric optimization of a 10?cell modular planar solid oxide fuel cell stack manifold.Applied?Energy,2013, 112:1100?1107.
[20] Wei S S,Wang T H,Wu J S.Numerical modeling of interconnect flow channel design and thermal stress analysis of a planar anode?supported solid oxide fuel cell stack.Energy,2014, 69:553?561.
[21] Jung H,Choi S,Kim H,et al.Fabrication and performance evaluation of 3?cell SOFC stack based on planar 10cm×10cm anode?supported cells.Journal?of?Power?Sources,2006, 159(1):478?483.
[22] Bi W,Chen D,Lin Z.A key geometric parameter for the flow uniformity in planar solid oxide fuel cell stacks. International?Journal?of?Hydrogen?Energy,2009, 34(9):3873?3884.
[23] Yokoo M,Tabata Y,Yoshida Y,et al.Highly efficient and durable anode?supported SOFC stack with internal manifold structure.Journal?of?Power?Sources,2008, 178(1):59?63.
[24] Jin L,Guan W,Niu J, et al.Effect of contact area and depth between cell cathode and interconnect on stack performance for planar solid oxide fuel cells.Journal?of?Power?Sources,2013, 240(0):796?805.
[25] Lindermeir A,Immisch C,Szepanski C,et al.New SOFC?Stack Design with Parallel?Connected Cells ? Basic Concept and Joining Aspects.Fuel?Cells,2015, 15(5):703?710.
[26] Dong S K,Jung W N,Rashid K,et al.Design and numerical analysis of a planar anode?supported SOFC stack.Renewable?Energy,2016, 94:637?650.
[27] Kee R J,Korada P,Walters K,et al.A generalized model of the flow distribution in channel networks of planar fuel cells.Journal?of?Power?Sources,2002, 109(1):148?159.
[28] Su A,Weng F B,Hsu C Y,et al.Studies on flooding in PEM fuel cell cathode channels.International?Journal?of?Hydrogen?Energy,2006, 31(8):1031?1039.
[29] Li P W,Chen S P,Chyu M K.Novel gas distributors and optimization for high power density in fuel cells.Journal?of?Power?Sources,2005, 140(2):311?318.
[30] 哈爾特 N T,帕斯萊 M N,奧凱利 M J,等.固體氧化物燃料電池堆.CN1555586, 2004.
[31] 王海千,謝斌,王曉平,等.環(huán)形導(dǎo)體框架支撐的平板式固體氧化物燃料電池堆構(gòu)建.101043083, 2007.
[32] Barbera O,Stassi A,Sebastian D,et al.Simple and functional direct methanol fuel cell stack designs for application in portable and auxiliary power units.International?Journal?of?Hydrogen?Energy,2016, 41(28):12320?12329.
[33] Park J,Bae J.Characterization of electrochemical reaction and thermo?fluid flow in metal?supported solid oxide fuel cell stacks with various manifold designs.International?Journal?of?Hydrogen?Energy,2012, 37(2):1717?1730.
[34] Pohjoranta A,Halinen M,Pennanen J,et al.Solid oxide fuel cell stack temperature estimation with data?based modeling?Designed experiments and parameter identification.Journal?of?Power?Sources,2015, 277(0):464?473.
[35] Azari K,Vaghasloo Y A,Mohandesi J A,et al.The effect of cell shape on the warpage in solid oxide fuel cells.Journal?of?Power?Sources,2015, 279(0):64?71.
[36] Boersma R J,Sammes N M.Computational analysis of the gas?flow distribution in solid oxide fuel cell stacks.Journal?of?Power?Sources,1996, 63(2):215?219.
[37] Hirata H,Nakagaki T,Hori M.Effect of gas channel height on gas flow and gas diffusion in a molten carbonate fuel cell stack.Journal?of?Power?Sources,1999, 83(1?2):41?49.
[38] Hirata H,Nakagaki T,Hori M.Pressure losses at dividing and combining junctions in a molten carbonate fuel cell stack.Journal?of?Power?Sources,2001, 102(1?2):118?123.
[39] Maharudrayya S,Jayanti S,Deshpande A.Pressure losses in laminar flow through serpentine channels in fuel cell stacks.Journal?of?Power?Sources,2004, 138(1):1?13.
[40] Maharudrayya S,Jayanti S,Deshpande A P.Pressure drop and flow distribution in multiple parallel?channel configurations used in proton?exchange membrane fuel cell stacks.Journal?of?Power?Sources,2006, 157(1):358?367.
[41] Barreras F,Lozano A,Valio L,et al.Flow distribution in a bipolar plate of a proton exchange membrane fuel cell: experiments and numerical simulation studies.Journal?of?Power?Sources,2005, 144(1):54?66.
[42] Lin C K,Chen T T,Chyou Y P,et al.Thermal stress analysis of a planar SOFC stack.Journal?of?Power?Sources,2007, 164(1):238?251.
[43] Chen C H,Jung S P,Yen S C.Flow distribution in the manifold of PEM fuel cell stack.Journal?of?Power?Sources,2007, 173(1):249?263.
[44] Huang C M,Shy S S,Leeb C H.On flow uniformity in various interconnects and its influence to cell performance of planar SOFC.Journal?of?Power?Sources,2008, 183:205?213.
[45] Su S,He H,Chen D,et al.Flow distribution analyzing for the solid oxide fuel cell short stacks with rectangular and discrete cylindrical rib configurations.International?Journal?of?Hydrogen?Energy,2015, 40(1):577?592.
[46] Blum L,Gro? S M,Malzbender J,et al.Investigation of solid oxide fuel cell sealing behavior under stack relevant conditions at Forschungszentrum Jülich.Journal?of?Power?Sources,2011, 196(17):7175?7181.
[47] Peksen M.A coupled 3D thermofluid?thermomechanical analysis of a planar type production scale SOFC stack.International?Journal?of?Hydrogen?Energy,2011, 36(18):11914?11928.
[48] Chen D F,Xu Y,Tade M O,et al.General Regulation of Air Flow Distribution Characteristics within Planar Solid Oxide Fuel Cell Stacks.ACS?Energy?Letters,2017:319?326.
- 太陽能干燥技術(shù)及應(yīng)用
- 面向綜合能源系統(tǒng)的節(jié)能新技術(shù)
- 生物質(zhì)能轉(zhuǎn)化原理與技術(shù)
- 再制造性工程
- 傳熱技術(shù)、設(shè)備與工業(yè)應(yīng)用
- 新能源材料技術(shù)
- 除濕轉(zhuǎn)輪與冷熱聯(lián)產(chǎn)熱泵耦合空調(diào)技術(shù)
- 海上風(fēng)電灌漿技術(shù)
- 國家能源治理:從能源革命到能源治理能力現(xiàn)代化
- 太陽能光伏發(fā)電系統(tǒng)設(shè)計(jì)與應(yīng)用實(shí)例
- 生物質(zhì)資源再利用
- 氫能及質(zhì)子交換膜燃料電池動(dòng)力系統(tǒng)(碳中和交通出版工程·氫能燃料電池動(dòng)力系統(tǒng)系列)
- 風(fēng)力發(fā)電機(jī)的原理與控制
- 晶體硅太陽電池生產(chǎn)工藝
- 雙有源全橋變換器建模與優(yōu)化調(diào)制