- 中國新材料研究前沿報告2020
- 中國工程院化工 冶金與材料工程學部 中國材料研究學會編寫
- 2503字
- 2021-12-24 14:15:34
參考文獻
[1] Courtney T H. Mechanical Behavior of Materials. 2rd ed. New York:McGraw Hill,1999:751.
[2] Ashby M F. Materials Selection in Mechanical Design. 2rd ed. New York:Elsevier Science,2004:665.
[3] Meyers M A,Chawla K K. Mechanical Behavior of Materials. 2rd ed. Cambridge,UK:Cambridge University Press,2009:882.
[4] Hull D,Bacon D J. Introduction to Dislocations. Burlington:Elsevier,2011:268.
[5] Callister W D,Jr. Materials Science and Engineering:An Introduction. New York:Wiley,2000:791.
[6] Gleiter H,in:N. Hansen et al.(Ed.)Deformation in Polycrystals:Mechanics and Microstructures,Second Ris? International Symposium on Metallurgy and Materials Science,Ris? National Laboratory,Ris?,Denmark,1981:15.
[7] Koch C C,Morris D G,Lu K,et al. Ductility of nanostructured materials. MRS Bull,1999,24(2):54.
[8] Valiev R Z,Islamgaliev R K,Alexandrov I V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci.,2000,45(2):103.
[9] Meyers M A,Mishra A,Benson D J. Mechanical properties of nanocrystalline materials. Prog. Mater Sci.,2006,51(4):427.
[10] Erb U. Electrodeposited nanocrystals:Synthesis,properties and industrial applications. Nanostruct. Mater.,1995,6(5-8):533.
[11] Kumar K S,Van Swygenhoven H,Suresh S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater.,2003,51(19):5743.
[12] Zhilyaev A P,Langdon T G. Using high-pressure torsion for metal processing:Fundamentals and applications. Prog. Mater Sci.,2008,53(6):893.
[13] Gleiter H. Nanostructured materials:Basic concepts and microstructure. Acta Mater.,2000,48(1):1.
[14] Lu K,Lu L,Suresh S. Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale. Science,2009,324(5925):349.
[15] Watanabe T. An approach to grain-boundary design for strong and ductile polycrystals. Res Mech.,1984,11(1):47.
[16] Davies P,Randle V. Grain boundary engineering and the role of the interfacial plane. Mater. Sci. Technol.,2001,17(6):615.
[17] Lin P,Palumbo G,Erb U,et al. Influence of grain-boundary-character-distribution on sensitization and intergranular corrosion of alloy-600. Scripta Metall. Mater.,1995,33(9):1387.
[18] Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater.,2016,1(5):16019.
[19] Li X Y,Lu L,Li J G,et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nat. Rev. Mater.,2020,5(9):706.
[20] Lu L,Shen Y F,Chen X H,et al. Ultrahigh strength and high electrical conductivity in copper. Science,2004,304(5669):422.
[21] Lu L,Chen X,Huang X,et al. Revealing the Maximum Strength in Nanotwinned Copper. Science,2009,323(5914):607.
[22] Li X,Wei Y,Lu L,et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature,2010,464(7290):877.
[23] You Z S,Lu L,Lu K. Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins. Acta Mater.,2011,59(18):6927.
[24] Hodge A M,Wang Y M,et al. Mechanical deformation of high-purity sputter-deposited nano-twinned copper. Scripta Mater.,2008,59(2):163.
[25] Sansoz F,Lu K,Zhu T,et al. Strengthening and plasticity in nanotwinned metals. MRS Bull.,2016,41(4):292.
[26] Zhang X,Wang H,Chen X H,et al. High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Appl. Phys. Lett.,2006,88(17):173116.
[27] Lu Q H,You Z S,Huang X X,et al. Dependence of dislocation structure on orientation and slip systems in highly oriented nanotwinned Cu. Acta Mater.,2017,127:85.
[28] You Z S,Li X Y,Gui L J,et al. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater.,2013,61(1):217.
[29] Pan Q S,Lu Q H,Lu L. Fatigue behavior of columnar-grained Cu with preferentially oriented nanoscale twins. Acta Mater.,2013,61(4):1383.
[30] Pan Q S,Lu L. Strain-controlled cyclic stability and properties of Cu with highly oriented nanoscale twins. Acta Mater.,2014,81(0):248.
[31] Pan Q S,Zhou H F,Lu Q H,et al. History-independent cyclic response of nanotwinned metals. Nature,2017,551(7679):214.
[32] Chen K C,Wu W W,Liao C N,et al. Observation of atomic diffusion at twin-modified grain boundaries in copper. Science,2008,321(5892):1066.
[33] Liu X C,Zhang H W,Lu K. Strain-Induced Ultrahard and Ultrastable Nanolaminated Structure in Nickel. Science,2013,342(6156):337.
[34] Jiang S,Wang H,Wu Y,et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature,2017,544(7651):460.
[35] Wang Y M,Voisin T,McKeown J T,et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater.,2018,17(1):63.
[36] He B B,Hu B,Yen H W,et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science,2017,357(6355):1029.
[37] Liu L,Yu Q,Wang Z,et al. Making ultrastrong steel tough by grain-boundary delamination. Science,2020,368(6497):1347.
[38] National Academies of Sciences,Engineering,and Medicine. Frontiers of Materials Research:A Decadal Survey. Washington,DC:The National Academies,2019:211.
[39] Wu X L,Jiang P,Chen L,et al. Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. U. S. A.,2014,111(20):7197.
[40] Liu Z Q,Meyers M A,Zhang Z F,et al. Functional gradients and heterogeneities in biological materials:Design principles,functions,and bioinspired applications. Prog. Mater Sci.,2017,88:467.
[41] Yu S H,Wu H A,Liu C,et al. Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers. Natl. Sci. Rev.,2020,7(1):73.
[42] Fang T H,Li W L,Tao N R,et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science,2011,331(6024):1587.
[43] Kou H N,Lu J,Li Y. High-Strength and High-Ductility Nanostructured and Amorphous Metallic Materials. Adv. Mater.,2014,26(31):5518.
[44] Wei Y,Li Y,Zhu L,et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat Commun.,2014,5:3580.
[45] 盧柯. 梯度納米結構材料. 金屬學報,2015,51(1):1.
[46] 李毅. 梯度結構金屬材料研究進展. 中國材料進展,2016,35(9):658.
[47] Lin Y,Pan J,Zhou H F,et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel. Acta Mater.,2018,153:279.
[48] Cao R,Yu Q,Pan J,et al. On the exceptional damage-tolerance of gradient metallic materials. Mater. Today,2020,32:94.
[49] Lu K. Making strong nanomaterials ductile with gradients. Science,2014,345(6203):1455.
[50] Huang H W,Wang Z B,Lu J,et al. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer. Acta Mater.,2015,87(0):150.
[51] Lei Y B,Wang Z B,Xu J L,et al. Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure. Acta Mater.,2019,168:133.
[52] Roland T,Retraint D,Lu K,et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scripta Mater.,2006,54(11):1949.
[53] Long J Z,Pan Q S,Tao N R,et al. Abnormal grain coarsening in cyclically deformed gradient nanograined Cu. Scripta Mater.,2018,145:99.
[54] Long J Z,Pan Q S,Tao N R,et al. Improved fatigue resistance of gradient nanograined Cu. Acta Mater.,2019,166:56.
[55] Pan Q S,Long J Z,Jing L J,et al. Cyclic strain amplitude-dependent fatigue mechanism of gradient nanograined Cu. Acta Mater. 2020,196:252.
[56] Pan Q S,Lu L. Improved fatigue resistance of gradient nanograined metallic materials:Suppress strain localization and damage accumulation. Scripta Mater.,2020,187:301.
[57] Chen X,Han Z,Li X,et al. Lowering coefficient of friction in Cu alloys with stable gradient nanostructures. Sci Adv.,2016,2(12):e1601942.
[58] Zeng Z,Li X,Xu D,et al. Gradient plasticity in gradient nano-grained metals. Extreme Mech. Lett.,2016,8:213.
[59] Wu X,Yang M,Yuan F,et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc. Natl. Acad. Sci. U. S. A.,2015,112(47):14501.
[60] Wu X,Zhu Y,Lu K. Ductility and strain hardening in gradient and lamellar structured materials. Scripta Mater.,2020,186:321.
[61] Li J,Zhang Q,Huang R,et al. Towards understanding the structure-property relationships of heterogeneous-structured materials. Scripta Mater. 2020,186:304.
[62] Yang M X,Pan Y,Yuan F P,et al. Back stress strengthening and strain hardening in gradient structure. Mater. Res. Lett.,2016,4(3):145.
[63] Shi Y D,Wang Y Y,Wang L N,et al. A gradient dislocation-structured low-carbon steel with enhanced strength-ductility synergy. Mater. Lett. 2020,265:127386.
[64] Huang C X,Wang Y F,Ma X L,et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate. Mater. Today,2018,21(7):713.
[65] Wang Y F,Wang M S,Fang X T,et al. Extra strengthening in a coarse/ultrafine grained laminate:Role of gradient interfaces. Int. J. Plast.,2019,123:196.
[66] Cheng Z,Zhou H,Lu Q,et al. Extra strengthening and work hardening in gradient nanotwinned metals. Science,2018,362(6414):1.
[67] Chen K,Li L. Ordered Structures with Functional Units as a Paradigm of Material Design. Adv. Mater.,2019,31(32):1901115.
[68] Zhang X. Heterostructures:new opportunities for functional materials. Mater. Res. Lett.,2019,8(2):49.
[69] Huang G,Li X,Lou L,et al. Engineering Bulk,Layered,Multicomponent Nanostructures with High Energy Density. Small,2018,14(22):e1800619.
[70] Li X,Lou L,Song W,et al. Novel Bimorphological Anisotropic Bulk Nanocomposite Materials with High Energy Products. Adv. Mater.,2017,29(16):1606430.
[71] Biswas K,He J,Blum I D,et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature,2012,489(7416):414.
作者簡介
盧磊,中科院金屬研究所研究員、博士生導師,杰出青年科學基金、科技部“萬人計劃”領軍人才獲得者,科技部“納米科技”指南編制組及重點專項總體專家組成員。長期從事納米金屬材料的基礎研究,主持和參加國家科技部國家重點基礎研究發展計劃、國家自然科學基金委員會重大項目、重點項目等項目,取得了系列重要原創性成果,是國際上本研究領域的主要學術帶頭人之一。發表SCI論文120余篇,論文被SCI引用15000次,70余次在國際學術會議作特邀報告,成果在國內外學術界產生了重要影響。先后獲得多項獎勵,如2009年獲得SCUPOS尋找“未來科學希望之星”納米科學領域銀獎、2012年獲得第九屆“中國青年女科學家獎”、多次獲湯森路透“全球高被引用科學家”及愛思唯爾“中國高被引用學者”等榮譽。現任Acta Materialia 和Scripta Materialia 期刊編輯。