- 中國新材料產業發展報告(2020)
- 中國工程院化工 冶金與材料工程學部 中國材料研究學會編寫
- 3737字
- 2022-01-13 15:01:16
4.5 推動我國人工肺中空纖維交換膜材料產業發展的對策和建議
目前在國內注冊醫療器械生產人工肺的國際企業有5家,進口企業有25家。ECMO的應用從2003年的“非典”之后急劇增加,使用技術從三甲醫院擴散至地方醫院。現在急需一種性能更好、價格更便宜的膜肺來降低醫療價格,提升治愈率,而不是等待國外技術的擴散。目前國內外多采用熱致相分離法生產聚烯烴中空纖維膜作為膜肺,由于其原理限制,導致生產速度慢,溶劑部分原料回收困難,包含固液加熱共混后續萃取等工藝,較為復雜。針對現在技術壁壘和專利的圍墻,我們可以在目前得到的新原料中尋找功能更為優越的新材料,作為替代,進行有針對性的研發;針對目前成型工藝以及原理存在的缺陷,進行工藝創新,以加工方式的革新,創造新的體系,越過國外壁壘的同時,促進國內的發展,以點帶面,促進一系列產業的發展。
ECMO在重大疫情中能夠發揮關鍵作用,是國家公共衛生安全中的重要一環,對此我們有關于產業和人才兩方面的建議:
① 應加緊研制國產ECMO膜,通過設立重大科研項目、組織科研攻關團隊等,走產業聯盟途徑,產業鏈各環節廠家聯合進行開發,加速國產ECMO膜落地。同時,我國應加強對新材料、精細化工和元器件等關鍵核心技術的支持力度,從“源頭”上促進醫療裝備產業發展。通過精準扶持,加速ECMO膜紡絲設備國產替代進程。在ECMO膜設備國產替代過程中,我國應對掌握關鍵核心技術的企業從科研、生產到應用等環節進行精準扶持,政策與金融支持推進ECMO膜國產化進程,助力ECMO國產設備加速落地。
② 一個產業要想不斷地向前發展,就需要不斷地創新。人工膜肺及其組件不斷地發展創新表現在“表面涂層”“血液濾過”和“小型化”方面,而人才的培養顯得尤為重要。在工程應用型的專業人才培養的主要目的是為了更好地滿足當前行業發展的需求。因此在培訓中,一定要以基層、生產線為原則,在提升通識教育的前提下,增強學生綜合素質的培養,動手能力以及實踐能力的培養。除了完善校內工程實訓條件之外,還要增強校企學研基地的建設,以此來彌補校內實訓的不足,從而使學生學習以及實踐得到更好的完善。
相信在眾多醫療機構和高校等研究機構的協同合作下,ECMO人工肺中空纖維交換膜核心材料必將會完成自主研發,國產自主研發ECMO設備也將在不久的將來誕生,具有更高的安全性和有效性,并能更好地為我國及其他國家有需要的病患者服務。
參考文獻
[1] 宮美慧, 蔣樹林, 李詠梅, 等.人工膜肺氧合器臨床應用研究及發展趨勢[J].現代生物醫學進展, 2015, 15(21): 4186-4190.
[2] 黑飛龍, 龍村, 于坤.體外膜肺氧合并發癥研究[J].中國體外循環雜志, 2005(04): 243-245.
[3] Madhani S P, May A G, Frankowski B J, et al. Blood Recirculation Enhances Oxygenation Efficiency of Artificial Lungs[J]. Asaio Journal, 2020, 66(5): 565-570.
[4] Raffaeli G, Pokorna P, Ailegaert K, et al. Drug Disposition and Pharmacotherapy in Neonatal ECMO: From Fragmented Data to Integrated Knowledge[J]. Frontiers in Pediatrics, 2019, 7.
[5] 潘紅, 黃琴紅, 蔡英華, 等.13例體外膜肺氧合治療危重患者院內轉運的護理[J].中華護理雜志, 2017, 52(05): 561-563.
[6] Daniel J M, Bernard P A, Skinner S C, et al. Hollow Fiber Oxygenator Composition Has a Significant Impact on Failure Rates in Neonates on Extracorporeal Membrane Oxygenation: A Retrospective Analysis[J]. Journal of Pediatric Intensive Care, 2018, 7 (1): 7-13.
[7] 陳虹, 吳前勝, 陳麗, 等. ECMO聯合CRRT救治危重型新型冠狀病毒肺炎患者3例的護理[J].中西醫結合護理(中英文), 2020, 6(04): 182-186.
[8] 梅早仙, 孫昕, 吳琦.人工肺的現狀和發展[J].生物醫學工程學雜志, 2010, 27(06): 1410-1414.
[9] 劉東, 王盛宇, 孫凌波, 等. ECMO的臨床應用[J].北京生物醫學工程, 2008(03): 305-308+327.
[10] Sauer C M, Yuh D D , Bonde P. Extracorporeal Membrane Oxygenation Use Has Increased by 433% in Adults in the United States from 2006 to 2011[J]. ASAIO Journal, 2015: 31-36.
[11] Ann Arbor, MI. ELSO Guidelines for ECMO Centers[M]. Extracorporeal Life Support Organization (ELSO), 2010.
[12] 丁海濤.習近平在北京考察新冠肺炎防控科研攻關工作[J].中國發展觀察, 2020(Z3).
[13] Stamatialis D F, Papenburg B J, Girones M, et al. Medical Applications of Membranes: Drug Delivery, Artificial Organs and Tissue Engineering[J]. Journal of Membrane Science, 2008, 308 (1-2): 1-34.
[14] Iwahashi H, Yuri K, Nosé Y. Development of the Oxygenator: Past, Present, and Future[J]. Journal of Artificial Organs, 2004, 7(3): 111-120.
[15] Robb W L. Thin Silicone Membranes--Their Permeation Properties and Some Applications[J]. Annals of the New York Academy of Sciences, 1968, 146 (1): 119-137.
[16] Yasuda H, Lamaze C E. Transfer of Gas to Dissolved Oxygen in Water via Porous and Nonporous Polymer Membranes[J]. Journal of Applied Polymer Science, 1972, 16 (3): 595-601.
[17] Kolobow T, Spragg R G, Pierce J E, et al.Extended Term (to 16 Days) Partial Extracorporeal Blood Gas Exchange with the Spiral Membrane Lung in Unanesthetized Lambs[J]. Transactions-American Society for Artificial Internal Organs, 1971, 17: 350-354.
[18] Abada E N, Feinberg B J, Roy S. Evaluation of Silicon Membranes for Extracorporeal Membrane Oxygenation (ECMO)[J]. Biomedical Microdevices, 2018, 20 (4).
[19] Motomura T, Maeda T, Kawahito S, et al. Extracorporeal Membrane Oxygenator Compatible with Centrifugal Blood Pumps[J]. Artificial Organs, 2002, 26(11): 952-958.
[20] Schumer E, Hoffler K, Kuehn C, et al. In-vitro Evaluation of Limitations and Possibilities for the Future Use of Intracorporeal Gas Exchangers Placed in the Upper Lobe Position[J]. Journal of Artificial Organs, 2018, 21 (1): 68-75.
[21] Yeager T, Roy S. Evolution of Gas Permeable Membranes for Extracorporeal Membrane Oxygenation[J]. Artificial Organs, 2017, 41 (8): 700-709.
[22] Lin F C, Wang D M, Lai J Y. Asymmetric TPX Membranes with High Gas Flux[J]. Journal of Membrane Science, 1996, 110 (1): 25-36.
[23] Müller M O, Kessler E, Hornscheidt R R, et al. Integrally Asymmetrical Polyolefin Membrane for Gas Exchange[P]. US6409921B1, 2002.
[24] Madhani S P, Frankowski B J, Federspiel W J. Fiber Bundle Design for an Integrated Wearable Artificial Lung[J]. Asaio Journal, 2017, 63 (5): 631-636.
[25] Wickramasinghe S R, Garcia J D, Han B B. Mass and Momentum Transfer in Hollow Fibre Blood Oxygenators[J]. Journal of Membrane Science, 2002, 208 (1-2): 247-256.
[26] Ahmed T, Semmens M J. Use of Sealed Hollow Fibers for Bubbleless Membrane Aeration-Experimental Studies [J]. Journal of Membrane Science, 1992, 69 (1-2): 1-10.
[27] Ahmed T, Semmens M J. The Use of Independently Sealed Microporous Hollow Fiber Membranes for Oxygenation of Water-Model Development[J]. Journal of Membrane Science, 1992, 69 (1-2): 11-20.
[28] Moulin P, Rouch J C, Serra C, et al. Mass Transfer Improvement by Secondary Flows: Dean Vortices in Coiled Tubular Membranes[J]. Journal of Membrane Science, 1996, 114 (2): 235-244.
[29] Matsuda N, Sakai K. Blood Flow and Oxygen Transfer Rate of an Outside Blood Flow Membrane Oxygenator[J]. Journal of Membrane Science, 2000, 170 (2): 153-158.
[30] Catapano G, Papenfuss H D, Wodetzki A, et al. Mass and Momentum Transport in Extra-luminal Flow (ELF) Membrane Devices for Blood Oxygenation[J]. Journal of Membrane Science, 2001, 184 (1): 123-135.
[31] Catapano G, Hornscheidt R, Wodetzki A, et al. Turbulent Flow Technique for the Estimation of Oxygen Diffusive Permeability of Membranes for the Oxygenation of Blood and Other Cell Suspensions[J]. Journal of Membrane Science, 2004, 230 (1-2): 131-139.
[32] Gerling K, Olschlager S, Avci-Adali M, et al. A Novel C1-Esterase Inhibitor Oxygenator Coating Prevents FXII Activation in Human Blood[J]. Biomolecules, 2020, 10 (7).
[33] Sreenivasan R, Bassett E K, Hoganson D M, et al. Ultra-thin, Gas Permeable Free-standing and Composite Membranes for Microfluidic Lung Assist Devices[J]. Biomaterials, 2011, 32 (16): 3883-3889.
[34] Hess C, Wiegmann B, Maurer A N, et al. Reduced Thrombocyte Adhesion to Endothelialized Poly 4-Methyl-1-Pentene Gas Exchange Membranes-A First Step Toward Bioartificial Lung Development[J]. Tissue Engineering Part A, 2010, 16 (10): 3043-3053.
[35] Kaar J L, Oh H I, Russell A J, et al. Towards Improved Artificial Lungs Through Biocatalysis[J]. Biomaterials, 2007, 28 (20): 3131-3139.
[36] Kimmel J D, Arazawa D T, Ye S H, et al. Carbonic Anhydrase Immobilized on Hollow Fiber Membranes Using Glutaraldehyde Activated Chitosan for Artificial Lung Applications[J]. Journal of Materials Science-Materials in Medicine, 2013, 24 (11): 2611-2621.
[37] Potkay J A. The Promise of Microfluidic Artificial Lungs[J]. Lab on a Chip, 2014, 14 (21): 4122-4138.
[38] Jani J M, Wessling M, Lammertink R G H. Geometrical Influence on Mixing in Helical Porous Membrane Microcontactors[J]. Journal of Membrane Science, 2011, 378 (1-2): 351-358.
[39] Femmer T, Kuehne A J C, Torres-Rendon J, et al. Print your Membrane: Rapid Prototyping of Complex 3D-PDMS Membranes via a Sacrificial Resist[J]. Journal of Membrane Science, 2015, 478: 12-18.
[40] Hoganson D M, Pryor H I, Bassett E K, et al. Lung Assist Device Technology with Physiologic Blood Flow Developed on a Tissue Engineered Scaffold Platform[J]. Lab on a Chip, 2011, 11 (4): 700-707.
[41] Kniazeva T, Epshteyn A A, Hsiao J C, et al. Performance and Scaling Effects in a Multilayer Microfluidic Extracorporeal Lung Oxygenation Device[J]. Lab on a Chip, 2012, 12 (9): 1686-1695.
[42] Gimbel A A, Flores E, Koo A, et al. Development of a Biomimetic Microfluidic Oxygen Transfer Device[J]. Lab on a Chip, 2016, 16 (17): 3227-3234.
[43] Wu W I, Rochow N, Chan E, et al. Lung Assist Device: Development of Microfluidic Oxygenators for Preterm Infants with Respiratory Failure[J]. Lab on a Chip, 2013, 13 (13): 2641-2650.
[44]何春菊, 孫俊芬, 吳光香, 等.改性PAN中空纖維原絲的研制[J].東華大學學報(自然科學版), 2006(01): 11-14.
[45] 朱思君, 段友容, 梅勇, 等.聚醚砜中空纖維膜的制備[J].合成纖維工業, 2005(03): 22-24.
[46] Wang J, Liu L, Qu Z, et al. Outstanding Antifouling Performance of Poly(vinylidene fluoride) Membranes: Novel Amphiphilic Brushlike Copolymer Blends and One-step Surface Zwitterionization[J]. Journal of Applied Polymer Science, 2019, 136 (24).
[47] Qiu Z, Ji X, He C. Fabrication of a Loose Nanofiltration Candidate from Polyacrylonitrile/Graphene Oxide Hybrid Membrane via Thermally Induced Phase Separation[J]. Journal of Hazardous Materials, 2018, 360: 122-131.
[48] 王慶瑞, 陳雪英, 何春菊.高分子膜材料及人工臟器[J].膜科學與技術, 2003(04): 151-155.
[49] 孫俊芬, 王慶瑞.新型膜式人工臟器的研究進展[J].產業用紡織品, 2001(08): 9-13.
[50] 龐嬿婉, 陶錚, 張輝, 等.交叉流微孔聚丙烯中空纖維膜式氧合器研究[J].復旦學報(自然科學版), 2001(4): 381-386.
[51] Wang Y B, Gong M, Yang S, et al. Hemocompatibility and Film Stability Improvement of Crosslinkable MPC Copolymer Coated Polypropylene Hollow Fiber Membrane[J]. Journal of Membrane Science, 2014, 452: 29-36.
[52] 饒華新.新型中空纖維膜式人工肺的設計與研究[D].廣州: 暨南大學, 2008.
[53] 趙肖.中空纖維膜的層層自組裝制備及其在膜式氧合器中的應用研究[D].廣州: 暨南大學, 2016.
[54] 黃鑫.熱致相分離法制備聚4-甲基-1-戊烯中空纖維膜及其表面血液相容性改性[D].南京: 南京大學, 2016.
[55] Huang X, Wang W P, Zheng Z, et al. Surface Monofunctionalized Polymethyl Pentene Hollow Fiber Membranes by Plasma Treatment and Hemocompatibility Modification for Membrane Oxygenators[J]. Applied Surface Science, 2016, 362: 355-363.
[56] 葉非華, 易國斌.可交聯磷酰膽堿聚合物改性聚甲基戊烯中空纖維膜[J].復合材料學報, 2021: 38.
[57] 王琴梅, 張滌華, 廖艷紅, 等.聚甲基戊烯膜式氧合器表面碳酸酐酶的固定化及性能研究[J].化學通報, 2009, 72(6): 549-553.
[58] 許少波, 王建華.中空纖維膜式氧合器的研究進展[J]. 學科前沿, 2006(10): 4-7.
[59] Aksoy A E, Hasirci V, Hasirci N. Surface Modification of Polyurethanes with Covalent Immobilization of Heparin[C]//Macromolecular Symposia. WILEY-VCH Verlag, 2008, 269(1): 145-153.
[60] Tashiro M, Okamoto T, Sakanashi Y, et al. Experimental Evaluation of the V-point Heparinbonding System Applied to a Densemembrane Artificial Lung during 24hour Extracorporeal Circulation in Beagles[J]. Artificial Organs, 2001, 25(8): 655-663.
[61] 王風婷, 羅峰.膜式氧合器中膜材料的研究進展[J].中國組織工程研究與臨床康復, 2008, 12(10): 1927-1930.
[62] Reng M, Philipp A, Kaiser M, et al. Pumpless Extracorporeal Lung Assist and Adult Respiratory Distress Syndrome[J]. The Lancet, 2000, 356(9225): 219-220.
[63] Nishinaka T, Tatsumi E, Taenaka Y, et al. At Least Thirty-four Days of Animal Continuous Perfusion by a Newly Developed Extracorporeal Membrane Oxygenation System without Systemic Anticoagulants[J]. Artificial Organs, 2002, 26(6): 548-551.
朱美芳,教授,中國科學院院士,東華大學材料科學與工程學院院長,纖維材料改性國家重點實驗室主任,中國材料研究學會副理事長及纖維材料改性與復合技術分會理事會主任、中國女科技工作者協會第四屆理事會副會長、國家重點研發計劃“重點基礎材料技術提升與產業化”重點專項總體專家組專家、第七屆國務院學位委員會材料科學與工程學科評議組成員、2018—2022教育部高等學校材料類專業教學指導委員會副主任委員、中國化學會高分子學科委員會副主任委員。主要從事纖維材料功能化、舒適化和智能化領域的研究,取得了系統性和創造性成果。先后主持國家重點研發計劃、國家自然科學基金重點項目等國家及省部級科研任務30余項;發表SCI論文350余篇,出版著作10部(章);獲授權中國發明專利180余件、PCT6件;以第一完成人獲國家科技進步二等獎、上海市自然科學一等獎、上海市技術發明一等獎等10余項。
何春菊,東華大學材料科學與工程學院教授,博士生導師,教育部新世紀優秀人才、上海市浦江學者,纖維材料改性國家重點實驗室固定成員。主要研究方向為中空纖維膜人工臟器、功能膜材料的研制及應用。先后參與國家高技術研究發展計劃(863計劃)重大計劃、科技支撐計劃、主持國家自然科學基金面上項目、青年基金項目等國家及省部級科研任務30余項;以第一作者發表SCI論文70余篇,出版著作3部(章);獲授權中國發明專利40余件;獲香港桑麻基金會桑麻紡織科技一等獎、上海市科技進步二等獎、福建省科技進步二等獎等5項。
孟哲一,東華大學材料科學與工程學院副研究員,主要從事仿生膜材料研究。2016年畢業于北京航空航天大學材料物理與化學專業,獲工學博士學位,之后在英國倫敦大學學院化學工程系從事博士后研究,2019年入職東華大學。至今共發表SCI論文13篇,以第一作者身份發表Adv. Mater. 1篇,ACS Appl. Mater. Intefaces 兩篇。主持國家自然科學基金青年基金項目一項,參與過國內自然科學基金面上項目兩項、973課題兩項、英國EPSRC基金項目一項。