官术网_书友最值得收藏!

2.7 錯流旋轉(zhuǎn)填充床的傳質(zhì)特性

隨著旋轉(zhuǎn)填充床轉(zhuǎn)子直徑的增加,機械強度、加工精度都會要求越來越高,所以,設(shè)備投資費用都會大幅增加。因此,減小轉(zhuǎn)子直徑是降低設(shè)備投資的一個重要途徑,由此提出了錯流旋轉(zhuǎn)填充床的設(shè)想。其基本思想是液體由空心軸進入旋轉(zhuǎn)填充床(見圖2-68),在轉(zhuǎn)子的噴淋段沿徑向噴出,與軸向流動的氣體錯流接觸后被拋到外腔,然后由設(shè)備底部排出。

從理論上講,錯流傳質(zhì)推動力不如逆流大,但對液相濃度較高的循環(huán)操作,液體經(jīng)過一次吸收后濃度變化極小,對于這類氣液過程,采用逆流、錯流或并流,其傳質(zhì)推動力差別不大。另外,對于濕法除塵過程,由于不存在平衡分壓問題,氣液錯流接觸分離效果可能更好。因為氣體橫吹可將填料中的液絲吹斷,液膜吹破,有利于增加氣液接觸機會,增強分離效果。如果在錯流接觸情況下的傳質(zhì)系數(shù)和逆流相當(dāng),而兩種情況下過程的推動力沒有顯著差異或不是過程的主要矛盾時,則錯流旋轉(zhuǎn)填充床可因其以下的特點而具有吸引力:錯流旋轉(zhuǎn)填充床不存在逆流液泛的限制氣速問題,而其出口氣體中的液沫夾帶可通過捕沫段設(shè)計解決,因此,錯流床有可能采取遠比逆流旋轉(zhuǎn)填充床泛點氣速高得多的操作氣速,如采取類似于氣體管道中的經(jīng)濟氣速(8~16m/s),這對于處理大氣量的洗滌、吸收過程具有特別有意義。

圖2-68 錯流超重力機結(jié)構(gòu)示意圖

1—空心軸;2—氣體入口;3—轉(zhuǎn)子動密封;4—填料;5—空心軸液體分布孔;6—液體出口;7—液體濃度軸向分布取樣盒;8—轉(zhuǎn)子U型管液體出口;9—填料筐支撐葉片;10—氣體出口;11—外殼

郭奮[41]對錯流旋轉(zhuǎn)填充床的流體力學(xué)和傳質(zhì)特性進行了理論分析和實驗研究。分別采用氮氣解吸水中的氧這一典型的液膜控制傳質(zhì)過程和水吸收空氣中的氨這一氣膜控制傳質(zhì)過程,對錯流旋轉(zhuǎn)填充床的傳質(zhì)過程進行了實驗研究和理論計算,還利用氨法尾氣SO2吸收,研究了錯流旋轉(zhuǎn)填充床的化學(xué)吸收過程,計算結(jié)果與實驗值吻合較好。結(jié)果表明,錯流旋轉(zhuǎn)填充床的傳質(zhì)單元高度在2~5cm,與逆流旋轉(zhuǎn)填充床的結(jié)果相當(dāng),用于氨法尾氣SO2吸收單級吸收率可達90%以上,是一種高效的傳質(zhì)設(shè)備。

2.7.1 體積傳質(zhì)系數(shù)實驗值的計算模型

由于氣液錯流接觸,氣液濃度在徑向和軸向上都有變化,所以很難得到計算床層傳質(zhì)系數(shù)的解析式,只能將床層分為微圓環(huán),用試差和遞推的方法求取。即先給定體積傳質(zhì)系數(shù)Kxa,然后,從氣相或液相入口端逐層遞推,最后,求出氣液相出口平均濃度與實驗值比較。如果兩者之差小于精度要求,則認為Kxa即為所求,否則,修正Kxa重新從頭開始遞推計算,直到滿足要求。

2.7.1.1 計算假設(shè)

(1)氣相平推流;

(2)液相無軸向和徑向返混;

(3)液相傳質(zhì)系數(shù)Kxa取常數(shù);

(4)氣體徑向與軸向壓力一致;

(5)不考慮端效應(yīng)。

2.7.1.2 計算方法

(1)對填料層沿軸向分為m等份,即分為m段;

(2)對填料層沿徑向分為n等份,即分為n個同心圓筒;

(3)用兩個二維數(shù)組分別記錄nm個微圓環(huán)的氣液相濃度。

2.7.1.3 質(zhì)量平衡方程

對第ij個微環(huán)(見圖2-69)列質(zhì)量平衡方程(設(shè)為氣體解吸):

 (2-94)

式中 LG——分別為液、氣相摩爾流率,mol/s;

 R1R2——分別為填料層的內(nèi)外半徑,m;

 H——填料的軸向長度,m;

 a——傳質(zhì)總比表面積,m2/m3

 NA——傳質(zhì)通量,mol/(m2?s)。

 (2-95)

式中 Kx——液相傳質(zhì)系數(shù),mol/m2s;

 xe——液相平衡濃度,可由亨利定律求出。

 (2-96)

式中 H e——亨利系數(shù),mmHg;

圖2-69 微環(huán)衡算示意圖

 PA——O2的氣相分壓,mmHg,PA由下式計算:

 (2-97)

式中 P——床內(nèi)總壓,mmHg;

 y——氧的摩爾分數(shù)。

將式(2-95)代入式(2-94),得到:

 (2-98)

積分上式得:

 (2-99)

變形得:

 (2-100)

式中,

 (2-101)

定義為第j段的徑向傳質(zhì)單元高度,m;

 (2-102)

定義為第j段的傳質(zhì)單元數(shù)。

可以看出此結(jié)果與逆流旋轉(zhuǎn)填充床的結(jié)果在形式上完全一致。由式(2-103)還可看出,由于R2-R1為常數(shù),所以NTU對每個徑向?qū)佣枷嗟取H绻摧S向定義傳質(zhì)單元高度則:

 (2-103)

對錯流床以軸向傳質(zhì)單元高度表達傳質(zhì)特性較好為合理,所以后面的傳質(zhì)單元高度皆以軸向表示。

2.7.1.4 遞推公式的推導(dǎo)

(1)對液相,由式(2-94)得:

 (2-104)

,代入式(2-104)得:

 (2-105)

AHKxa/L代入式(2-105)并整理,得到液相濃度的遞推公式:

 (2-106)

(2)對氣相,對第ij微環(huán)列出質(zhì)量平衡方程得:

 (2-107)

將Δz=H/m,Δy=yijyij1,Δx=xi1,jxij,代入式(2-107)得:

 (2-108)

代入式(2-108)得:

 (2-109)

式(2-106)、式(2-109)為錯流旋轉(zhuǎn)填充床的遞推公式,由給定的進口條件和Kxa,自填料內(nèi)層向外遞推,對每層(薄圓筒)自氣體進口向出口推,即可得到出口氣液相濃度分布。

2.7.1.5 氣液出口平均濃度的計算

(1)對出口液體:

 (2-110)

(2)對出口氣體:

 (2-111)
2.7.1.6 體積傳質(zhì)系數(shù)實驗值的計算過程

(1)給定nm值,輸入數(shù)據(jù);

(2)由實驗測得的氣液進出口濃度,用逆流床的計算公式估算Kxa初值并定出上下限;逆流床的計算Kxa公式為:

 (2-112)

式中 x0x2——分別為液相進出口的氧濃度;

 xe0xe2——分別為液相進出口的氧平衡濃度。

(3)根據(jù)Kxa初值由遞推公式(2-106)、式(2-109)遞推求出氣液相出口濃度分布,再由下式(2-110)求出液相出口的平均濃度;

(4)將液體出口濃度的測量值與計算值對比。如果計算值與實驗值的誤差小于控制精度,則認為這時的Kxa值即為實驗值。如果誤差不小于控制精度則采用二分法修正Kxa值重新計算直至滿足精度要求;

(5)計算框圖。計算框圖如圖2-70所示。

2.7.2 理論計算與試驗結(jié)果的對比

實驗與模擬結(jié)果的對比見圖2-71。由圖可看出,在整個實驗范圍內(nèi),模型的計算結(jié)果與實驗結(jié)果吻合良好。圖2-72~圖2-74為HTUG0L0N變化的部分實驗結(jié)果。由圖可看出,轉(zhuǎn)速對HTU的影響最為顯著。在轉(zhuǎn)速為1420r/min時,HTU基本在2.5~4cm之間,逆流旋轉(zhuǎn)填充床的結(jié)果也是在這一范圍內(nèi),這說明錯流旋轉(zhuǎn)填充床的傳質(zhì)效果也相當(dāng)好。

圖2-70 體積傳質(zhì)系數(shù)實驗值的計算框圖

圖2-71 體積傳質(zhì)系數(shù)的模擬與實驗結(jié)果對比

圖2-72 不同液量下傳質(zhì)單元高度隨氣量變化的部分實驗結(jié)果

圖2-73 不同氣量下傳質(zhì)單元高度隨液量變化的部分實驗結(jié)果

圖2-74 不同液量下傳質(zhì)單元高度隨轉(zhuǎn)速變化的部分實驗結(jié)果

圖2-75~圖2-78是不同氣量、液量與轉(zhuǎn)速下體積傳質(zhì)系數(shù)的模型計算與實驗結(jié)果對比的部分結(jié)果。由圖可看出,二者雖有小的誤差,但均有相同趨勢,特別是轉(zhuǎn)速對Kxa影響的模型計算結(jié)果與實驗值吻合良好。

圖2-75 不同液量下體積傳質(zhì)系數(shù)隨氣量變化的模擬與實驗結(jié)果對比

圖2-76 不同氣量下體積傳質(zhì)系數(shù)隨液量變化的模擬與實驗結(jié)果對比

主站蜘蛛池模板: 霍林郭勒市| 商丘市| 太仓市| 芜湖市| 正蓝旗| 清徐县| 罗平县| 华亭县| 泾源县| 德清县| 舒城县| 贺兰县| 云浮市| 乌兰察布市| 伊宁县| 泸定县| 克什克腾旗| 同仁县| 连城县| 龙里县| 松桃| 凭祥市| 武鸣县| 夹江县| 四平市| 竹山县| 沙雅县| 鄂托克前旗| 东阳市| 福建省| 会理县| 盐池县| 会宁县| 鄂伦春自治旗| 英山县| 周宁县| 霍州市| 平南县| 临猗县| 页游| 朝阳市|