- Hadoop Beginner's Guide
- Garry Turkington
- 266字
- 2021-07-29 16:51:40
Time for action – WordCount the easy way
Let's revisit WordCount, but this time use some of these predefined map
and reduce
implementations:
- Create a new
WordCountPredefined.java
file containing the following code:import org.apache.hadoop.conf.Configuration ; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.map.TokenCounterMapper ; import org.apache.hadoop.mapreduce.lib.reduce.IntSumReducer ; public class WordCountPredefined { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = new Job(conf, "word count1"); job.setJarByClass(WordCountPredefined.class); job.setMapperClass(TokenCounterMapper.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
- Now compile, create the JAR file, and run it as before.
- Don't forget to delete the output directory before running the job, if you want to use the same location. Use the
hadoop fs -rmr
output, for example.
What just happened?
Given the ubiquity of WordCount as an example in the MapReduce world, it's perhaps not entirely surprising that there are predefined Mapper
and Reducer
implementations that together realize the entire WordCount solution. The TokenCounterMapper
class simply breaks each input line into a series of (token, 1)
pairs and the IntSumReducer
class provides a final count by summing the number of values for each key.
There are two important things to appreciate here:
- Though WordCount was doubtless an inspiration for these implementations, they are in no way specific to it and can be widely applicable
- This model of having reusable mapper and reducer implementations is one thing to remember, especially in combination with the fact that often the best starting point for a new MapReduce job implementation is an existing one
推薦閱讀
- 樂高機器人:WeDo編程與搭建指南
- 我的J2EE成功之路
- SCRATCH與機器人
- Hands-On Artificial Intelligence on Amazon Web Services
- Excel 2007函數與公式自學寶典
- 自動控制原理
- 四向穿梭式自動化密集倉儲系統的設計與控制
- 高維聚類知識發現關鍵技術研究及應用
- Pentaho Analytics for MongoDB
- LMMS:A Complete Guide to Dance Music Production Beginner's Guide
- 強化學習
- Mastering Ansible(Second Edition)
- 電腦上網入門
- 計算機硬件技術基礎(第2版)
- Getting Started with Tableau 2019.2