官术网_书友最值得收藏!

Running the WordCount program in a distributed cluster environment

This recipe describes how to run a MapReduce computation in a distributed Hadoop v2 cluster.

Getting ready

Start the Hadoop cluster by following the Setting up HDFS recipe or the Setting up Hadoop ecosystem in a distributed cluster environment using a Hadoop distribution recipe.

How to do it...

Now let's run the WordCount sample in the distributed Hadoop v2 setup:

  1. Upload the wc-input directory in the source repository to the HDFS filesystem. Alternatively, you can upload any other set of text documents as well.
    $ hdfs dfs -copyFromLocal wc-input .
    
  2. Execute the WordCount example from the HADOOP_HOME directory:
    $ hadoop jar hcb-c1-samples.jar \
    chapter1.WordCount \
    wc-input wc-output
    
  3. Run the following commands to list the output directory and then look at the results:
    $hdfs dfs -ls wc-output
    Found 3 items
    -rw-r--r-- 1 joesupergroup0 2013-11-09 09:04 /data/output1/_SUCCESS
    drwxr-xr-x - joesupergroup0 2013-11-09 09:04 /data/output1/_logs
    -rw-r--r-- 1 joesupergroup1306 2013-11-09 09:04 /data/output1/part-r-00000
    
    $ hdfs dfs -cat wc-output/part*
    

How it works...

When we submit a job, YARN would schedule a MapReduce ApplicationMaster to coordinate and execute the computation. ApplicationMaster requests the necessary resources from the ResourceManager and executes the MapReduce computation using the containers it received from the resource request.

There's more...

You can also see the results of the WordCount application through the HDFS monitoring UI by visiting http://NAMANODE:50070.

主站蜘蛛池模板: 泗水县| 宁化县| 尉氏县| 昭通市| 平凉市| 合山市| 延寿县| 大港区| 通化市| 乐东| 和田县| 日照市| 怀柔区| 鄢陵县| 长海县| 斗六市| 安丘市| 威远县| 阜南县| 普定县| 云阳县| 保定市| 大丰市| 青州市| 兰考县| 壤塘县| 方正县| 黄山市| 沈阳市| 兰西县| 进贤县| 周口市| 古浪县| 洛川县| 措勤县| 阿图什市| 陵川县| 英吉沙县| 山阳县| 乃东县| 射洪县|