- Mastering Julia
- Malcolm Sherrington
- 261字
- 2021-07-16 13:42:41
Data arrays and data frames
Users of R will be aware of the success of data frames when employed in analyzing datasets, a success which has been mirrored by Python with the pandas
package. Julia too adds data frame support through use of a package DataFrames
, which is available on GitHub, in the usual way.
The package extends Julia's base by introducing three basic types:
NA
: An indicator that a data value is missingDataArray
: An extension to theArray
type that can contain missing valuesDataFrame
: A data structure for representing tabular datasets
It is such a large topic that we will be looking at data frames in some depth when we consider statistical computing in Chapter 4, Interoperability.
However, to get a flavor of processing data with these packages:
julia> Pkg.add("DataFrames") # if not already done so, adding DataFrames will add the DataArray and Blocks framework too. julia> using DataFrames julia> d0 = @data([1.,3.,2.,NA,6.]) 5-element DataArray{Float64,1}: 1.0 3.0 2.0 NA 6.0
Common operations such as computing mean(d)
or var(d) [variance]
will produce NA
because of the missing value in d[4]
:
julia>isna(d0[4]) # => true
We can create a new data array by removing all the NA
values and now statistical functions can be applied as normal:
julia> d1 = removeNA(d0) # => 4-element Array{Float64,1} julia> (mean(d1), var(d1)) # => (3.0,4.66667)
Notice that if we try to convert a data array to a normal array, this will fail for d0
because of the NA
values but will succeed for d1
:
julia> convert(Array,d0) # =>MethodError(convert,(Array{T,N},[1.0,3.0,2.0,NA,6.0])) julia> convert(Array,d1) # => 4-element Array{Float64,1}:
- Microsoft Application Virtualization Cookbook
- 小創客玩轉圖形化編程
- 我的第一本算法書
- Visual C++串口通信技術詳解(第2版)
- Building a Recommendation Engine with Scala
- 秒懂設計模式
- Quarkus實踐指南:構建新一代的Kubernetes原生Java微服務
- Redis Essentials
- Tableau 10 Bootcamp
- Learning AngularJS for .NET Developers
- 零基礎學Scratch 3.0編程
- iOS開發項目化入門教程
- Clojure Web Development Essentials
- 情境微課開發(第2版)
- 深度學習的數學:使用Python語言