- Mastering Julia
- Malcolm Sherrington
- 261字
- 2021-07-16 13:42:41
Data arrays and data frames
Users of R will be aware of the success of data frames when employed in analyzing datasets, a success which has been mirrored by Python with the pandas
package. Julia too adds data frame support through use of a package DataFrames
, which is available on GitHub, in the usual way.
The package extends Julia's base by introducing three basic types:
NA
: An indicator that a data value is missingDataArray
: An extension to theArray
type that can contain missing valuesDataFrame
: A data structure for representing tabular datasets
It is such a large topic that we will be looking at data frames in some depth when we consider statistical computing in Chapter 4, Interoperability.
However, to get a flavor of processing data with these packages:
julia> Pkg.add("DataFrames") # if not already done so, adding DataFrames will add the DataArray and Blocks framework too. julia> using DataFrames julia> d0 = @data([1.,3.,2.,NA,6.]) 5-element DataArray{Float64,1}: 1.0 3.0 2.0 NA 6.0
Common operations such as computing mean(d)
or var(d) [variance]
will produce NA
because of the missing value in d[4]
:
julia>isna(d0[4]) # => true
We can create a new data array by removing all the NA
values and now statistical functions can be applied as normal:
julia> d1 = removeNA(d0) # => 4-element Array{Float64,1} julia> (mean(d1), var(d1)) # => (3.0,4.66667)
Notice that if we try to convert a data array to a normal array, this will fail for d0
because of the NA
values but will succeed for d1
:
julia> convert(Array,d0) # =>MethodError(convert,(Array{T,N},[1.0,3.0,2.0,NA,6.0])) julia> convert(Array,d1) # => 4-element Array{Float64,1}:
- Reporting with Visual Studio and Crystal Reports
- PHP+MySQL網站開發技術項目式教程(第2版)
- Unity Shader入門精要
- KnockoutJS Starter
- WebRTC技術詳解:從0到1構建多人視頻會議系統
- JavaScript+jQuery網頁特效設計任務驅動教程
- 動手打造深度學習框架
- R語言數據挖掘:實用項目解析
- OpenCV 3.0 Computer Vision with Java
- AutoCAD基礎教程
- TensorFlow.NET實戰
- Web前端開發全程實戰:HTML5+CSS3+JavaScript+jQuery+Bootstrap
- Programming MapReduce with Scalding
- 機器學習開發者指南
- Elasticsearch源碼解析與優化實戰