官术网_书友最值得收藏!

Array functions

Many helpful array functions are supported in NumPy for analyzing data. We will list some part of them that are common in use. Firstly, the transposing function is another kind of reshaping form that returns a view on the original data array without copying anything:

>>> a = np.array([[0, 5, 10], [20, 25, 30]])
>>> a.reshape(3, 2)
array([[0, 5], [10, 20], [25, 30]])
>>> a.T
array([[0, 20], [5, 25], [10, 30]])

In general, we have the swapaxes method that takes a pair of axis numbers and returns a view on the data, without making a copy:

>>> a = np.array([[[0, 1, 2], [3, 4, 5]], 
 [[6, 7, 8], [9, 10, 11]]])
>>> a.swapaxes(1, 2)
array([[[0, 3],
 [1, 4],
 [2, 5]],
 [[6, 9],
 [7, 10],
 [8, 11]]])

The transposing function is used to do matrix computations; for example, computing the inner matrix product XT.X using np.dot:

>>> a = np.array([[1, 2, 3],[4,5,6]])
>>> np.dot(a.T, a)
array([[17, 22, 27],
 [22, 29, 36],
 [27, 36, 45]])

Sorting data in an array is also an important demand in processing data. Let's take a look at some sorting functions and their use:

>>> a = np.array ([[6, 34, 1, 6], [0, 5, 2, -1]])

>>> np.sort(a) # sort along the last axis
array([[1, 6, 6, 34], [-1, 0, 2, 5]])

>>> np.sort(a, axis=0) # sort along the first axis
array([[0, 5, 1, -1], [6, 34, 2, 6]])

>>> b = np.argsort(a) # fancy indexing of sorted array
>>> b
array([[2, 0, 3, 1], [3, 0, 2, 1]])
>>> a[0][b[0]]
array([1, 6, 6, 34])

>>> np.argmax(a) # get index of maximum element
1

See the following table for a listing of array functions:

主站蜘蛛池模板: 天镇县| 七台河市| 长汀县| 沁阳市| 剑阁县| 宜章县| 福清市| 讷河市| 乡宁县| 泸水县| 巴青县| 克什克腾旗| 铜山县| 三江| 和政县| 双柏县| 昌乐县| 鹤庆县| 吉木萨尔县| 开远市| 达拉特旗| 金阳县| 如东县| 姜堰市| 英山县| 霍城县| 卢湾区| 天全县| 治多县| 山东| 根河市| 呼伦贝尔市| 仪征市| 逊克县| 新余市| 东安县| 洛宁县| 承德县| 武城县| 阳朔县| 桃源县|