官术网_书友最值得收藏!

Referential transparency

To understand referential transparency, let's first consider the following description:

Let me tell you a bit about India's capital, New Delhi. The Indian capital houses the Indian Parliament. The Indian capital is also home to Gali Paranthe Wali, where you get to eat the famous parathas.

We can also say the following instead:

Let me tell you a bit about India's capital, New Delhi. New Delhi houses the Indian Parliament. New Delhi is also home to Gali Paranthe Wali, where you get to eat the famous parathas.

Here, we substituted New Delhi with the Indian capital, but the meaning did not change. This is how we would generally express ourselves.

The description is referentially transparent with the following commands:

scala> def f1(x: Int, y: Int) = x * y
f1: (x: Int, y: Int)Int

scala> def f(x: Int, y: Int, p: Int, q: Int)= x * y + p * q
f: (x: Int, y: Int, p: Int, q: Int)Int

scala> f(2, 3, 4, 5)
res0: Int = 26

If we rewrite the f method as follows, the meaning won't change:

scala> def f(x: Int, y: Int, p: Int, q: Int)= f1(x, y) + f1(p, q)
f: (x: Int, y: Int, p: Int, q: Int)Int

The f1 method just depends upon its arguments, that is, it is pure.

Which method is not referentially transparent? Before we look at an example, let's look at Scala's ListBuffer function:

scala> import scala.collection.mutable.ListBuffer
import scala.collection.mutable.ListBuffer

The ListBuffer is a mutable collection. You can append a value to the buffer and modify it in place:

scala> val v = ListBuffer.empty[String]
v: scala.collection.mutable.ListBuffer[String] = ListBuffer()

scala> v += "hello"
res10: v.type = ListBuffer(hello)

scala> v
res11: scala.collection.mutable.ListBuffer[String] = ListBuffer(hello)

scala> v += "world"
res12: v.type = ListBuffer(hello, world)

scala> v
res13: scala.collection.mutable.ListBuffer[String] = ListBuffer(hello, world)

Armed with this knowledge, let's now look at the following command:

scala> val lb = ListBuffer(1, 2)
lb: scala.collection.mutable.ListBuffer[Int] = ListBuffer(1, 2)

scala> val x = lb += 9
x: lb.type = ListBuffer(1, 2, 9)
scala> println(x.mkString("-"))
1-2-9
scala> println(x.mkString("-"))
1-2-9

However, by substituting x with the expression (lb += 9), we get the following:

scala> println((lb += 9).mkString("-")) // 1 
1-2-9-9
scala> println((lb += 9).mkString("-")) // 2
1-2-9-9-9

This substitution gave us different results. The += method of ListBuffer is not a pure function as there is a side effect that occurred. The value of the lb variable at 1 and 2 is not the same.

主站蜘蛛池模板: 浦东新区| 平阴县| 庆阳市| 苏尼特左旗| 阜平县| 西畴县| 沙田区| 鹤庆县| 绥德县| 福海县| 宕昌县| 新邵县| 中山市| 田林县| 平舆县| 巢湖市| 赤峰市| 玛曲县| 宁武县| 鹿邑县| 大名县| 伊吾县| 南安市| 图木舒克市| 鲁山县| 广南县| 平谷区| 吴江市| 西峡县| 开远市| 湄潭县| 墨竹工卡县| 云霄县| 牡丹江市| 嘉义市| 新沂市| 北流市| 皮山县| 乌海市| 达拉特旗| 顺义区|