- Java Deep Learning Essentials
- Yusuke Sugomori
- 156字
- 2021-07-16 10:38:41
What this book covers
Chapter 1, Deep Learning Overview, explores how deep learning has evolved.
Chapter 2, Algorithms for Machine Learning - Preparing for Deep Learning, implements machine learning algorithms related to deep learning.
Chapter 3, Deep Belief Nets and Stacked Denoising Autoencoders, dives into Deep Belief Nets and Stacked Denoising Autoencoders algorithms.
Chapter 4, Dropout and Convolutional Neural Networks, discovers more deep learning algorithms with Dropout and Convolutional Neural Networks.
Chapter 5, Exploring Java Deep Learning Libraries – DL4J, ND4J, and More, gains an insight into the deep learning library, DL4J, and its practical uses.
Chapter 6, Approaches to Practical Applications – Recurrent Neural Networks and More, lets you devise strategies to use deep learning algorithms and libraries in the real world.
Chapter 7, Other Important Deep Learning Libraries, explores deep learning further with Theano, TensorFlow, and Caffe.
Chapter 8, What's Next?, explores recent deep learning movements and events, and looks into useful deep learning resources.
- 大數據技術基礎
- PyTorch深度學習實戰:從新手小白到數據科學家
- 達夢數據庫編程指南
- 輕松學大數據挖掘:算法、場景與數據產品
- Access 2016數據庫技術及應用
- 數據庫系統原理及應用教程(第4版)
- 算法與數據中臺:基于Google、Facebook與微博實踐
- 深度剖析Hadoop HDFS
- INSTANT Android Fragmentation Management How-to
- Access 2010數據庫程序設計實踐教程
- 利用Python進行數據分析(原書第2版)
- 大數據測試技術:數據采集、分析與測試實踐(在線實驗+在線自測)
- 區塊鏈應用開發指南:業務場景剖析與實戰
- 碼上行動:利用Python與ChatGPT高效搞定Excel數據分析
- 數據分析方法及應用:基于SPSS和EXCEL環境