官术网_书友最值得收藏!

Chapter 3. Econometric and Wavelet Analysis

In financial analytics, we need techniques to do predictive modeling for forecasting and finding the drivers for different target variables. In this chapter, we will discuss types of regression and how we can build a regression model in R for building predictive models. Also we will discuss, how we can implement a variable selection method and other aspects associated with regression. This chapter will not contain theoretical description but will just guide you in how to implement a regression model in R in the financial space. Regression analysis can be used for doing forecast on cross-sectional data in the financial domain. We will also cover frequency analysis of the data, and how transformations such as Fast Fourier, wavelet, Hilbert, haar transformations in time, and frequency domains help to remove noise in the data.

This chapter covers the following topics:

  • Simple linear regression
  • Multivariate linear regression
  • Multicollinearity
  • ANOVA
  • Feature selection
  • Stepwise variable selection
  • Ranking of variables
  • Wavelet analysis
  • Fast Fourier transformation
  • Hilbert transformation
主站蜘蛛池模板: 北海市| 廉江市| 北川| 叶城县| 高要市| 胶南市| 阜宁县| 乐都县| 安化县| 榆社县| 丰顺县| 清水河县| 榕江县| 奉化市| 江川县| 苏州市| 温宿县| 广丰县| 正安县| 黄冈市| 叙永县| 大厂| 响水县| 六盘水市| 塔城市| 赞皇县| 福安市| 舞阳县| 达州市| 延庆县| 南涧| 沂南县| 阿坝县| 临泽县| 宾阳县| 雷波县| 广安市| 温宿县| 安岳县| 福泉市| 鄄城县|