官术网_书友最值得收藏!

Visualizing data using Matplotlib

We shall learn about visualizing the data in a later chapter. For now, let's try loading two sample datasets and building a basic plot. First, install the sklearn library from which we shall load the data using the following command:

$ pip3 install scikit-learn 

Import the datasets using the following command:

from sklearn.datasets import load_iris from sklearn.datasets import load_boston 

Import the Matplotlib plotting module:

from matplotlib import pyplot as plt %matplotlib inline 

Load the iris dataset, print the description of the dataset, and plot column 1 (sepal length) as x and column 2 (sepal width) as y:

iris = load_iris() 
print(iris.DESCR) 
data=iris.data 
plt.plot(data[:,0],data[:,1],".") 

The resulting plot will look like the following image:

Load the boston dataset, print the description of the dataset and plot column 3 (proportion of non-retail business) as x and column 5 (nitric oxide concentration) as y, each point on the plot marked with a + sign:

boston = load_boston()
print(boston.DESCR)
data=boston.data
plt.plot(data[:,2],data[:,4],"+")

The resulting plot will look like the following image:

主站蜘蛛池模板: 皮山县| 德令哈市| 稻城县| 毕节市| 达日县| 诏安县| 微山县| 长沙县| 西平县| 安新县| 萨嘎县| 施秉县| 兴山县| 云霄县| 南郑县| 利川市| 金门县| 扶风县| 垦利县| 平泉县| 瓮安县| 信丰县| 会泽县| 嘉禾县| 兴安盟| 留坝县| 兴仁县| 福清市| 宝应县| 江孜县| 凤阳县| 永州市| 黎平县| 乌恰县| 白玉县| 府谷县| 灵山县| 若羌县| 镇远县| 勃利县| 乌拉特后旗|