官术网_书友最值得收藏!

Indexing and selecting data

In this section, we will focus on how to get, set, or slice subsets of Pandas data structure objects. As we learned in previous sections, Series or DataFrame objects have axis labeling information. This information can be used to identify items that we want to select or assign a new value to in the object:

>>> s4[['024', '002']] # selecting data of Series object
024 NaN
002 Mary
dtype: object
>>> s4[['024', '002']] = 'unknown' # assigning data
>>> s4
024 unknown
065 NaN
002 unknown
001 Nam
dtype: object

If the data object is a DataFrame structure, we can also proceed in a similar way:

>>> df5[['b', 'c']]
 b c
0 1 2
1 4 5
2 7 8

For label indexing on the rows of DataFrame, we use the ix function that enables us to select a set of rows and columns in the object. There are two parameters that we need to specify: the row and column labels that we want to get. By default, if we do not specify the selected column names, the function will return selected rows with all columns in the object:

>>> df5.ix[0]
a 0
b 1
c 2
Name: 0, dtype: int64
>>> df5.ix[0, 1:3]
b 1
c 2
Name: 0, dtype: int64

Moreover, we have many ways to select and edit data contained in a Pandas object. We summarize these functions in the following table:

Tip

Pandas data objects may contain duplicate indices. In this case, when we get or set a data value via index label, it will affect all rows or columns that have the same selected index name.

主站蜘蛛池模板: 乌拉特后旗| 苗栗县| 奇台县| 柳江县| 赞皇县| 明水县| 宿州市| 临城县| 梧州市| 广宗县| 临清市| 罗平县| 河东区| 石棉县| 安溪县| 施甸县| 闻喜县| 遂平县| 日喀则市| 瓦房店市| 易门县| 玉龙| 射阳县| 武汉市| 广安市| 兴义市| 辛集市| 武清区| 嘉义市| 青海省| 卢氏县| 株洲市| 德安县| 准格尔旗| 正宁县| 南部县| 三明市| 和平区| 衡阳市| 桦甸市| 浪卡子县|