- Python:Data Analytics and Visualization
- Phuong Vo.T.H Martin Czygan Ashish Kumar Kirthi Raman
- 191字
- 2021-07-09 18:51:37
Linear algebra with NumPy
Linear algebra is a branch of mathematics concerned with vector spaces and the mappings between those spaces. NumPy has a package called linalg that supports powerful linear algebra functions. We can use these functions to find eigenvalues and eigenvectors or to perform singular value decomposition:
>>> A = np.array([[1, 4, 6], [5, 2, 2], [-1, 6, 8]]) >>> w, v = np.linalg.eig(A) >>> w # eigenvalues array([-0.111 + 1.5756j, -0.111 – 1.5756j, 11.222+0.j]) >>> v # eigenvector array([[-0.0981 + 0.2726j, -0.0981 – 0.2726j, 0.5764+0.j], [0.7683+0.j, 0.7683-0.j, 0.4591+0.j], [-0.5656 – 0.0762j, -0.5656 + 0.00763j, 0.6759+0.j]])
The function is implemented using the geev Lapack routines that compute the eigenvalues and eigenvectors of general square matrices.
Another common problem is solving linear systems such as Ax = b
with A
as a matrix and x
and b
as vectors. The problem can be solved easily using the numpy.linalg.solve
function:
>>> A = np.array([[1, 4, 6], [5, 2, 2], [-1, 6, 8]]) >>> b = np.array([[1], [2], [3]]) >>> x = np.linalg.solve(A, b) >>> x array([[-1.77635e-16], [2.5], [-1.5]])
The following table will summarise some commonly used functions in the numpy.linalg
package:

推薦閱讀
- 電氣自動(dòng)化專業(yè)英語(第3版)
- Cinema 4D R13 Cookbook
- 圖解PLC控制系統(tǒng)梯形圖和語句表
- 永磁同步電動(dòng)機(jī)變頻調(diào)速系統(tǒng)及其控制(第2版)
- Moodle Course Design Best Practices
- 深度學(xué)習(xí)與目標(biāo)檢測(cè)
- Mastering Exploratory Analysis with pandas
- 人工智能:智能人機(jī)交互
- 洞察大數(shù)據(jù)價(jià)值:SAS編程與數(shù)據(jù)挖掘
- AWS Administration:The Definitive Guide(Second Edition)
- 這樣用Word!
- Practical Computer Vision
- 從零開始學(xué)HTML+CSS
- S7-200系列PLC應(yīng)用技術(shù)
- 仿魚機(jī)器人的設(shè)計(jì)與制作