- Mastering Machine Learning with R(Second Edition)
- Cory Lesmeister
- 48字
- 2021-07-09 18:23:57
Modeling and evaluation
For this part of the process, we will start with a logistic regression model of all the input variables and then narrow down the features with the best subsets. After this, we will try our hand at discriminant analysis and Multivariate Adaptive Regression Splines (MARS).
推薦閱讀
- 公有云容器化指南:騰訊云TKE實(shí)戰(zhàn)與應(yīng)用
- Python數(shù)據(jù)分析與挖掘?qū)崙?zhàn)
- SQL Server入門經(jīng)典
- 新型數(shù)據(jù)庫系統(tǒng):原理、架構(gòu)與實(shí)踐
- Starling Game Development Essentials
- 深入淺出Greenplum分布式數(shù)據(jù)庫:原理、架構(gòu)和代碼分析
- 大數(shù)據(jù)技術(shù)入門
- 高維數(shù)據(jù)分析預(yù)處理技術(shù)
- 數(shù)據(jù)科學(xué)實(shí)戰(zhàn)指南
- 探索新型智庫發(fā)展之路:藍(lán)迪國際智庫報(bào)告·2015(上冊)
- 區(qū)塊鏈技術(shù)應(yīng)用與實(shí)踐案例
- Deep Learning with R for Beginners
- 數(shù)據(jù)庫原理與設(shè)計(jì)實(shí)驗(yàn)教程(MySQL版)
- 數(shù)據(jù)中臺實(shí)戰(zhàn):手把手教你搭建數(shù)據(jù)中臺
- Artificial Intelligence for Big Data