官术网_书友最值得收藏!

Activation functions

Sigmoid and ReLU are generally called activation functions in neural network jargon. In the Testing different optimizers in Keras section, we will see that those gradual changes, typical of sigmoid and ReLU functions, are the basic building blocks to developing a learning algorithm which adapts little by little, by progressively reducing the mistakes made by our nets. An example of using the activation function σ with the (x1, x2, ..., xm) input vector, (w1, w2, ..., wm) weight vector, b bias, and Σ summation is given in the following diagram:

Keras supports a number of activation functions, and a full list is available at https://keras.io/activations/.

主站蜘蛛池模板: 天津市| 始兴县| 林芝县| 怀宁县| 平邑县| 民县| 灯塔市| 盐山县| 潢川县| 辽阳县| 定结县| 合江县| 肇庆市| 安泽县| 定日县| 兖州市| 石家庄市| 砚山县| 农安县| 砚山县| 洪洞县| 西华县| 阳春市| 通化市| 彭泽县| 平南县| 田林县| 洱源县| 彭阳县| 曲阳县| 涿州市| 鄂尔多斯市| 义马市| 上思县| 八宿县| 拉孜县| 高安市| 恩平市| 楚雄市| 新田县| 河曲县|