官术网_书友最值得收藏!

Prior, likelihood, and posterior

Bayes theorem states the following:

Posterior = Prior * Likelihood

This can also be stated as P (A | B) = (P (B | A) * P(A)) / P(B) , where P(A|B) is the probability of A given B, also called posterior.

Prior: Probability distribution representing knowledge or uncertainty of a data object prior or before observing it

Posterior: Conditional probability distribution representing what parameters are likely after observing the data object

Likelihood: The probability of falling under a specific category or class.

This is represented as follows:

主站蜘蛛池模板: 凤山市| 保靖县| 黄龙县| 冷水江市| 肇庆市| 贡嘎县| 广水市| 东明县| 南宁市| 施秉县| 开阳县| 道孚县| 渑池县| 朝阳县| 文化| 商洛市| 丘北县| 张家界市| 平泉县| 石泉县| 潼南县| 全州县| 万全县| 湖州市| 昭平县| 体育| 淳安县| 海口市| 塘沽区| 嵊泗县| 屏南县| 香格里拉县| 辽宁省| 双流县| 门头沟区| 周至县| 尼木县| 张家界市| 兴山县| 绵竹市| 秭归县|