官术网_书友最值得收藏!

Prior, likelihood, and posterior

Bayes theorem states the following:

Posterior = Prior * Likelihood

This can also be stated as P (A | B) = (P (B | A) * P(A)) / P(B) , where P(A|B) is the probability of A given B, also called posterior.

Prior: Probability distribution representing knowledge or uncertainty of a data object prior or before observing it

Posterior: Conditional probability distribution representing what parameters are likely after observing the data object

Likelihood: The probability of falling under a specific category or class.

This is represented as follows:

主站蜘蛛池模板: 淄博市| 湘乡市| 观塘区| 巴里| 民和| 竹北市| 双桥区| 阿拉善左旗| 玛沁县| 忻州市| 福清市| 新乡县| 独山县| 莫力| 桃园县| 双辽市| 嵊泗县| 安福县| 东明县| 三门峡市| 河源市| 新蔡县| 文登市| 辉县市| 二连浩特市| 和林格尔县| 体育| 大化| 贡觉县| 乐陵市| 卓尼县| 广宁县| 江西省| 环江| 平原县| 临洮县| 土默特左旗| 红原县| 阿尔山市| 鲁山县| 永昌县|