- Python High Performance(Second Edition)
- Gabriele Lanaro
- 123字
- 2021-07-09 21:01:54
Summary
In this chapter, we introduced the basic principles of optimization and applied those principles to a test application. When optimizing, the first thing to do is test and identify the bottlenecks in the application. We saw how to write and time a benchmark using the time Unix command, the Python timeit module, and the full-fledged pytest-benchmark package. We learned how to profile our application using cProfile, line_profiler, and memory_profiler, and how to analyze and navigate the profiling data graphically with KCachegrind.
In the next chapter, we will explore how to improve performance using algorithms and data structures available in the Python standard library. We will cover scaling, sample usage of several data structures, and learn techniques such as caching and memoization.
- Advanced Quantitative Finance with C++
- 摩登創(chuàng)客:與智能手機(jī)和平板電腦共舞
- Cocos2d-x游戲開發(fā):手把手教你Lua語言的編程方法
- Practical Internet of Things Security
- 程序員考試案例梳理、真題透解與強(qiáng)化訓(xùn)練
- Full-Stack Vue.js 2 and Laravel 5
- Oracle BAM 11gR1 Handbook
- Oracle JDeveloper 11gR2 Cookbook
- 計(jì)算機(jī)應(yīng)用基礎(chǔ)教程(Windows 7+Office 2010)
- FPGA嵌入式項(xiàng)目開發(fā)實(shí)戰(zhàn)
- 小程序從0到1:微信全棧工程師一本通
- C#面向?qū)ο蟪绦蛟O(shè)計(jì)(第2版)
- Python應(yīng)用開發(fā)技術(shù)
- ASP.NET Core and Angular 2
- 現(xiàn)代C++語言核心特性解析