官术网_书友最值得收藏!

Writing tests and benchmarks

Now that we have a working simulator, we can start measuring our performance and tune-up our code so that the simulator can handle as many particles as possible. As a first step, we will write a test and a benchmark.

We need a test that checks whether the results produced by the simulation are correct or not. Optimizing a program commonly requires employing multiple strategies; as we rewrite our code multiple times, bugs may easily be introduced. A solid test suite ensures that the implementation is correct at every iteration so that we are free to go wild and try different things with the confidence that, if the test suite passes, the code will still work as expected.

Our test will take three particles, simulate them for 0.1 time units, and compare the results with those from a reference implementation. A good way to organize your tests is using a separate function for each different aspect (or unit) of your application. Since our current functionality is included in the evolve method, our function will be named test_evolve. The following code shows the test_evolve implementation. Note that, in this case, we compare floating point numbers up to a certain precision through the fequal function:

    def test_evolve(): 
particles = [Particle( 0.3, 0.5, +1),
Particle( 0.0, -0.5, -1),
Particle(-0.1, -0.4, +3)]

simulator = ParticleSimulator(particles)

simulator.evolve(0.1)

p0, p1, p2 = particles

def fequal(a, b, eps=1e-5):
return abs(a - b) < eps

assert fequal(p0.x, 0.210269)
assert fequal(p0.y, 0.543863)

assert fequal(p1.x, -0.099334)
assert fequal(p1.y, -0.490034)

assert fequal(p2.x, 0.191358)
assert fequal(p2.y, -0.365227)

if __name__ == '__main__':
test_evolve()

A test ensures the correctness of our functionality but gives little information about its running time.  A benchmark is a simple and representative use case that can be run to assess the running time of an application. Benchmarks are very useful to keep score of how fast our program is with each new version that we implement.

We can write a representative benchmark by instantiating a thousand Particle objects with random coordinates and angular velocity, and feed them to a ParticleSimulator class. We then let the system evolve for 0.1 time units:

    from random import uniform 

def benchmark():
particles = [Particle(uniform(-1.0, 1.0),
uniform(-1.0, 1.0),
uniform(-1.0, 1.0))
for i in range(1000)]

simulator = ParticleSimulator(particles)
simulator.evolve(0.1)

if __name__ == '__main__':
benchmark()
主站蜘蛛池模板: 鲁山县| 西盟| 高雄市| 梁河县| 阿拉善右旗| 天峨县| 景泰县| 澄城县| 云林县| 仁布县| 始兴县| 十堰市| 广宁县| 普宁市| 无为县| 顺平县| 陆川县| 房山区| 海口市| 霍山县| 双牌县| 济宁市| 罗甸县| 巴青县| 乌审旗| 西平县| 新野县| 贡嘎县| 白水县| 类乌齐县| 平阳县| 富锦市| 文水县| 出国| 涿州市| 岳阳县| 龙门县| 偃师市| 瓮安县| 安阳县| 吉安县|