- Mastering PostgreSQL 9.6
- Hans Jurgen Schonig
- 539字
- 2021-07-09 19:57:19
Reducing space consumption
Indexing is nice and its main purpose is to speed up things as much as possible. As with all good stuff, indexing comes with a price tag: space consumption. To do its magic, an index has to store values in an organized fashion. If your table contains 10 million integer values, the index belonging to the table will logically contain those 10 million integer values.
A B-tree will contain a pointer to each row in the table, and so it is certainly not free of charge. To figure out how much space an index will need, you can ask psql using the \di+ command:
test=# \di+
List of relations
Schema | Name | Type | Owner | Table | Size
--------+------------+-------+-------+----------+-------
public | idx_cos | index | hs | t_random | 86 MB
public | idx_id | index | hs | t_test | 86 MB
public | idx_name | index | hs | t_test | 86 MB
public | idx_random | index | hs | t_random | 86 MB
(4 rows)
In my database, the staggering amount of 344 MB has been burned to store those indexes. Now, compare this to the amount of storage burned by the underlying tables:
test=# \d+
List of relations
Schema | Name | Type | Owner | Size
--------+---------------+----------+-------+------------
public | t_random | table | hs | 169 MB
public | t_test | table | hs | 169 MB
public | t_test_id_seq | sequence | hs | 8192 bytes
(3 rows)
The size of both tables combined is just 338 MB. In other words, our indexing needs more space than the actual data. In the real world, this is common and actually pretty likely. Recently I visited a Cybertec customer in Germany and I saw a database in which 64% of the database size was made up of indexes that were never used (not a single time over the period of months). So, over-indexing can be an issue just like under-indexing. Remember, those indexes don't just consume space. Every INSERT or UPDATE must maintain the values in the indexes as well. In extreme cases like our example, this vastly decreases write throughput.
If there are just a handful of different values in the table, partial indexes are a solution:
test=# DROP INDEX idx_name;
DROP INDEX
test=# CREATE INDEX idx_name ON t_test (name) WHERE name NOT IN ('hans', 'paul');
CREATE INDEX
In this case, the majority has been excluded from the index and a small, efficient index can be enjoyed:
test=# \di+ idx_name
List of relations
Schema | Name | Type | Owner | Table | Size
--------+----------+-------+-------+--------+-----------
public | idx_name | index | hs | t_test | 8192 bytes
(1 row)
Note that it only makes sense to exclude very frequent values that make up a large part of the table (at least 25% or so). Ideal candidates for partial indexes are gender (we assume that most people are male or female), nationality (assuming that most people in your country have the same nationality), and so on. Of course, applying this kind of trickery requires some deep knowledge of your data, but it certainly pays off.
- Splunk 7 Essentials(Third Edition)
- Oracle SOA Governance 11g Implementation
- 過程控制工程及仿真
- Visualforce Development Cookbook(Second Edition)
- 大數據處理平臺
- 機器人編程實戰
- 基于多目標決策的數據挖掘方法評估與應用
- 新手學電腦快速入門
- Implementing Splunk 7(Third Edition)
- Apache Superset Quick Start Guide
- PostgreSQL 10 Administration Cookbook
- 菜鳥起飛系統安裝與重裝
- Statistics for Data Science
- 網絡服務搭建、配置與管理大全(Linux版)
- ESP8266 Robotics Projects