How to do it...
Perform the following steps:
- Create three VMs.
The mentioned repository in the Getting ready section is providing a Vagrantfile spawning VMs with the following network characteristics:
- Adapter 1: NAT
- Adapter 2: Bridge en0: Wi-Fi (AirPort)
- Static IP address: 192.168.50.15X (X being the number of the node)
- Adapter type: paravirtualized
These are the steps to follow:
$ git clone https://github.com/adetalhouet/cluster-nodes.git
$ cd cluster-nodes
$ export NUM_OF_NODES=3
$ vagrant up
After a few minutes, to make sure the VMs are correctly running, execute the following command in the cluster-nodes folder:
$ vagrant status
Current machine states:
node-1 running (virtualbox)
node-2 running (virtualbox)
node-3 running (virtualbox)
This environment represents multiple VMs. The VMs are all listed preceding with their current state. For more information about a specific VM, run vagrant status NAME.
The credentials of the VMs are:
- User: vagrant
- Password: vagrant
We now have three VMs available at those IP addresses:
- 192.168.50.151
- 192.168.50.152
- 192.168.50.153
- Prepare the cluster deployment.
In order to deploy the cluster, we will use the cluster-deployer script provided by OpenDaylight:
$ git clone https://git.opendaylight.org/gerrit/integration/test.git
$ cd test/tools/clustering/cluster-deployer/
You will need the following information:
- Your VMs/containers IP addresses:
192.168.50.151, 192.168.50.152, 192.168.50.153
- Their credentials (must be the same for all the VMs/containers):
vagrant/vagrant
- The path to the distribution to deploy:
$ODL_ROOT
- The cluster's configuration files located under the templates/multi-node-test repository:
$ cd templates/multi-node-test/
$ ls -1
akka.conf.template
jolokia.xml.template
module-shards.conf.template
modules.conf.template
org.apache.karaf.features.cfg.template
org.apache.karaf.management.cfg.template
- Deploy the cluster.
We are currently located in the cluster-deployer folder:
$ pwd
test/tools/clustering/cluster-deployer
We need to create a temp folder, so the deployment script can put some temporary files in there:
$ mkdir temp
Your tree architecture should look like this:
$ tree
.
├── cluster-nodes
├── distribution-karaf-0.4.0-Beryllium.zip
└── test
└── tools
└── clustering
└── cluster-deployer
├── deploy.py
├── kill_controller.sh
├── remote_host.py
├── remote_host.pyc
├── restart.py
├── temp
└── templates
└── multi-node-test
Now let's deploy the cluster using this command:
$ python deploy.py --clean --distribution=../../../../distribution-karaf-0.4.0-Beryllium.zip --rootdir=/home/vagrant --hosts=192.168.50.151,192.168.50.152,192.168.50.153 --user=vagrant --password=vagrant --template=multi-node-test
If the process went fine, you should see similar logs while deploying:
https://github.com/jgoodyear/OpenDaylightCookbook/tree/master/chapter1/chapter1-recipe8
- Verify the deployment.
Let's use Jolokia to read the cluster's nodes data store:
Let's request on node 1, located under 192.168.50.151, its config data store for the network-topology shard:
- Type: GET
- Headers:
Authorization: Basic YWRtaW46YWRtaW4=
- URL: http://192.168.50.151:8181/jolokia/read/org.opendaylight.controller:Category=Shards,name=member-1-shard-topology-config,type=DistributedConfigDatastore
{
"request": {
"mbean": "org.opendaylight.controller:Category=Shards,name=member-1-shard-topology-config,type=DistributedConfigDatastore",
"type": "read"
},
"status": 200,
"timestamp": 1462739174,
"value": {
--[cut]--
"FollowerInfo": [
{
"active": true,
"id": "member-2-shard-topology-config",
"matchIndex": -1,
"nextIndex": 0,
"timeSinceLastActivity": "00:00:00.066"
},
{
"active": true,
"id": "member-3-shard-topology-config",
"matchIndex": -1,
"nextIndex": 0,
"timeSinceLastActivity": "00:00:00.067"
}
],
--[cut]--
"Leader": "member-1-shard-topology-config",
"PeerAddresses": "member-2-shard-topology-config: akka.tcp://opendaylight-cluster-data@192.168.50.152:2550/user/shardmanager-config/member-2-shard-topology-config, member-3-shard-topology-config: akka.tcp://opendaylight-cluster-data@192.168.50.153:2550/user/shardmanager-config/member-3-shard-topology-config",
"RaftState": "Leader",
--[cut]--
"ShardName": "member-1-shard-topology-config",
"VotedFor": "member-1-shard-topology-config",
--[cut]--
}
The result presents a lot of interesting information such as the leader of the requested shard, which can be seen under Leader. We can also see the current state (under active) of followers for this particular shard, represented by its id. Finally, it provides the addresses of the peers. Addresses can be found in the AKKA domain, as AKKA is the tool used to enable a node's wiring within the cluster.
By requesting the same shard on another peer, you would see similar information. For instance, for node 2 located under 192.168.50.152:
- Type: GET
- Headers:
Authorization: Basic YWRtaW46YWRtaW4=
- URL: http://192.168.50.152:8181/jolokia/read/org.opendaylight.controller:Category=Shards,name=member-2-shard-topology-config,type=DistributedConfigDatastore
{
"request": {
"mbean": "org.opendaylight.controller:Category=Shards,name=member-2-shard-topology-config,type=DistributedConfigDatastore",
"type": "read"
},
"status": 200,
"timestamp": 1462739791,
"value": {
--[cut]--
"Leader": "member-1-shard-topology-config",
"PeerAddresses": "member-1-shard-topology-config: akka.tcp://opendaylight-cluster-data@192.168.50.151:2550/user/shardmanager-config/member-1-shard-topology-config, member-3-shard-topology-config: akka.tcp://opendaylight-cluster-data@192.168.50.153:2550/user/shardmanager-config/member-3-shard-topology-config",
"RaftState": "Follower",
--[cut]--
"ShardName": "member-2-shard-topology-config",
"VotedFor": "member-1-shard-topology-config",
--[cut]--
}
}
We can see the peers for this shard as well as that this node is voted node 1 - to be elected the shard leader.
- Visual FoxPro程序設計教程(第3版)
- INSTANT Sencha Touch
- 假如C語言是我發明的:講給孩子聽的大師編程課
- C語言從入門到精通(第4版)
- Securing WebLogic Server 12c
- INSTANT OpenNMS Starter
- 微信小程序入門指南
- MATLAB for Machine Learning
- Building RESTful Python Web Services
- 深入實踐Kotlin元編程
- Mastering AWS Security
- 平面設計經典案例教程:CorelDRAW X6
- Julia High Performance(Second Edition)
- Groovy 2 Cookbook
- 虛擬現實建模與編程(SketchUp+OSG開發技術)