官术网_书友最值得收藏!

Loading the training data

The Iris dataset is included with scikit-learn. We first load all the necessary modules, as we did in our earlier examples:

In [1]: import numpy as np
... import cv2
... from sklearn import datasets
... from sklearn import model_selection
... from sklearn import metrics
... import matplotlib.pyplot as plt
... %matplotlib inline
In [2]: plt.style.use('ggplot')

Then, loading the dataset is a one-liner:

In [3]: iris = datasets.load_iris()

This function returns a dictionary we call iris, which contains a bunch of different fields:

In [4]: dir(iris)
Out[4]: ['DESCR', 'data', 'feature_names', 'target', 'target_names']

Here, all the data points are contained in 'data'. There are 150 data points, each of which have four feature values:

In [5]: iris.data.shape
Out[5]: (150, 4)

These four features correspond to the sepal and petal dimensions mentioned earlier:

In [6]: iris.feature_names
Out[6]: ['sepal length (cm)',
'sepal width (cm)',
'petal length (cm)',
'petal width (cm)']

For every data point, we have a class label stored in target:

In [7]: iris.target.shape
Out[7]: (150,)

We can also inspect the class labels, and find that there is a total of three classes:

In [8]: np.unique(iris.target)
Out[8]: array([0, 1, 2])
主站蜘蛛池模板: 新竹县| 昌平区| 香格里拉县| 沂南县| 方正县| 武威市| 谷城县| 南和县| 江都市| 喜德县| 彩票| 寿宁县| 利川市| 华蓥市| 曲松县| 时尚| 容城县| 商水县| 钟山县| 南木林县| 呼伦贝尔市| 郸城县| 安阳市| 吴旗县| 延川县| 梓潼县| 阳城县| 武乡县| 荔浦县| 江西省| 宁陕县| 读书| 漳平市| 丰台区| 清流县| 酉阳| 鹤壁市| 康定县| 苏尼特左旗| 延安市| 凌海市|