官术网_书友最值得收藏!

Loading the training data

The Iris dataset is included with scikit-learn. We first load all the necessary modules, as we did in our earlier examples:

In [1]: import numpy as np
... import cv2
... from sklearn import datasets
... from sklearn import model_selection
... from sklearn import metrics
... import matplotlib.pyplot as plt
... %matplotlib inline
In [2]: plt.style.use('ggplot')

Then, loading the dataset is a one-liner:

In [3]: iris = datasets.load_iris()

This function returns a dictionary we call iris, which contains a bunch of different fields:

In [4]: dir(iris)
Out[4]: ['DESCR', 'data', 'feature_names', 'target', 'target_names']

Here, all the data points are contained in 'data'. There are 150 data points, each of which have four feature values:

In [5]: iris.data.shape
Out[5]: (150, 4)

These four features correspond to the sepal and petal dimensions mentioned earlier:

In [6]: iris.feature_names
Out[6]: ['sepal length (cm)',
'sepal width (cm)',
'petal length (cm)',
'petal width (cm)']

For every data point, we have a class label stored in target:

In [7]: iris.target.shape
Out[7]: (150,)

We can also inspect the class labels, and find that there is a total of three classes:

In [8]: np.unique(iris.target)
Out[8]: array([0, 1, 2])
主站蜘蛛池模板: 广东省| 景东| 平泉县| 大竹县| 海阳市| 绥中县| 台北市| 崇州市| 吉水县| 崇文区| 鲜城| 磴口县| 旬邑县| 堆龙德庆县| 凤庆县| 牡丹江市| 万全县| 修文县| 织金县| 青川县| 蒙山县| 霸州市| 尤溪县| 盐津县| 迭部县| 新民市| 苏尼特右旗| 襄城县| 福泉市| 丁青县| 新乡县| 探索| 肥乡县| 西乌| 绥中县| 阳原县| 洪泽县| 抚州市| 定州市| 清苑县| 元阳县|