官术网_书友最值得收藏!

When to stop tuning machine learning models

When to stop tuning the hyperparameters in a machine learning model is a million-dollar question. This problem can be mostly solved by keeping tabs on training and testing errors. While increasing the complexity of a model, the following stages occur:

  • Stage 1: Underfitting stage - high train and high test errors (or low train and low test accuracy)
  • Stage 2: Good fit stage (ideal scenario) - low train and low test errors (or high train and high test accuracy)
  • Stage 3: Overfitting stage - low train and high test errors (or high train and low test accuracy)
主站蜘蛛池模板: 兴业县| 绥德县| 泉州市| 双柏县| 濉溪县| 镇宁| 永清县| 赫章县| 台南市| 冕宁县| 临武县| 黄梅县| 义马市| 黎平县| 浦东新区| 来宾市| 原阳县| 通州市| 河西区| 靖远县| 德阳市| 额敏县| 苏州市| 红原县| 张家口市| 翁源县| 古浪县| 波密县| 黄浦区| 石台县| 津市市| 云阳县| 和田市| 富顺县| 本溪市| 安新县| 阿克陶县| 子洲县| 涟源市| 灵璧县| 株洲市|