官术网_书友最值得收藏!

When to stop tuning machine learning models

When to stop tuning the hyperparameters in a machine learning model is a million-dollar question. This problem can be mostly solved by keeping tabs on training and testing errors. While increasing the complexity of a model, the following stages occur:

  • Stage 1: Underfitting stage - high train and high test errors (or low train and low test accuracy)
  • Stage 2: Good fit stage (ideal scenario) - low train and low test errors (or high train and high test accuracy)
  • Stage 3: Overfitting stage - low train and high test errors (or high train and low test accuracy)
主站蜘蛛池模板: 富宁县| 枣庄市| 晋城| 清苑县| 会昌县| 元阳县| 武乡县| 麻城市| 通山县| 三江| 中山市| 临高县| 保亭| 定兴县| 会宁县| 潞城市| 宣化县| 蛟河市| 泰宁县| 内黄县| 武穴市| 平原县| 南漳县| 西安市| 德令哈市| 巩留县| 太保市| 中宁县| 德昌县| 潼关县| 县级市| 察雅县| 潞西市| 石首市| 巴彦县| 衡水市| 泽普县| 聂拉木县| 横峰县| 额济纳旗| 洛南县|