官术网_书友最值得收藏!

Linear regression versus gradient descent

In the following code, a comparison has been made between applying linear regression in a statistical way and gradient descent in a machine learning way on the same dataset:

>>> import numpy as np 
>>> import pandas as pd 

The following code describes reading data using a pandas DataFrame:

>>> train_data = pd.read_csv("mtcars.csv")      

Converting DataFrame variables into NumPy arrays in order to process them in scikit learn packages, as scikit-learn is built on NumPy arrays itself, is shown next:

>>> X = np.array(train_data["hp"])  ; y = np.array(train_data["mpg"])  
>>> X = X.reshape(32,1); y = y.reshape(32,1) 

Importing linear regression from the scikit-learn package; this works on the least squares method:

>>> from sklearn.linear_model import LinearRegression 
>>> model = LinearRegression(fit_intercept = True) 

Fitting a linear regression model on the data and display intercept and coefficient of single variable (hp variable):

>>> model.fit(X,y) 
>>> print ("Linear Regression Results" ) 
>>> print ("Intercept",model.intercept_[0] ,"Coefficient", model.coef_[0]) 

Now we will apply gradient descent from scratch; in future chapters, we can use the scikit-learn built-in modules rather than doing it from first principles. However, here, an illustration has been provided on the internal workings of the optimization method on which the whole machine learning has been built.

Defining the gradient descent function gradient_descent with the following:

  • x: Independent variable.
  • y: Dependent variable.
  • learn_rate: Learning rate with which gradients are updated; too low causes slower convergence and too high causes overshooting of gradients.
  • batch_size: Number of observations considered at each iteration for updating gradients; a high number causes a lower number of iterations and a lower number causes an erratic decrease in errors. Ideally, the batch size should be a minimum value of 30 due to statistical significance. However, various settings need to be tried to check which one is better.
  • max_iter: Maximum number of iteration, beyond which the algorithm will get auto-terminated:
>>> def gradient_descent(x, y,learn_rate, conv_threshold,batch_size, max_iter): 
...    converged = False 
...    iter = 0 
...    m = batch_size   
...    t0 = np.random.random(x.shape[1]) 
...    t1 = np.random.random(x.shape[1]) 
Mean square error calculation
Squaring of error has been performed to create the convex function, which has nice convergence properties:
...    MSE = (sum([(t0 + t1*x[i] - y[i])**2 for i in range(m)])/ m)

The following code states, run the algorithm until it does not meet the convergence criteria:

...      while not converged:         
...          grad0 = 1.0/m * sum([(t0 + t1*x[i] - y[i]) for i in range(m)])   
...          grad1 = 1.0/m * sum([(t0 + t1*x[i] - y[i])*x[i] for i in range(m)])  
...          temp0 = t0 - learn_rate * grad0 
...          temp1 = t1 - learn_rate * grad1     
...          t0 = temp0 
...          t1 = temp1 

Calculate a new error with updated parameters, in order to check whether the new error changed more than the predefined convergence threshold value; otherwise, stop the iterations and return parameters:

...          MSE_New = (sum( [ (t0 + t1*x[i] - y[i])**2 for i in range(m)] ) / m) 
...          if abs(MSE - MSE_New ) <= conv_threshold: 
...              print 'Converged, iterations: ', iter 
...              converged = True     
...          MSE = MSE_New    
...          iter += 1      
...          if iter == max_iter: 
...              print 'Max interactions reached' 
...              converged = True 
...          return t0,t1 

The following code describes running the gradient descent function with defined values. Learn rate = 0.0003, convergence threshold = 1e-8, batch size = 32, maximum number of iteration = 1500000:

>>> if __name__ == '__main__': 
...      Inter, Coeff = gradient_descent(x = X,y = y,learn_rate=0.00003 , conv_threshold = 1e-8, batch_size=32,max_iter=1500000) 
...      print ('Gradient Descent Results')  
...      print (('Intercept = %s Coefficient = %s') %(Inter, Coeff))  

The R code for linear regression versus gradient descent is as follows:

# Linear Regression 
train_data = read.csv("mtcars.csv",header=TRUE) 
model <- lm(mpg ~ hp, data = train_data) 
print (coef(model)) 
 
# Gradient descent 
gradDesc <- function(x, y, learn_rate, conv_threshold, batch_size, max_iter) { 
  m <- runif(1, 0, 1) 
  c <- runif(1, 0, 1) 
  ypred <- m * x + c 
  MSE <- sum((y - ypred) ^ 2) / batch_size 
   
  converged = F 
  iterations = 0 
   
  while(converged == F) { 
    m_new <- m - learn_rate * ((1 / batch_size) * (sum((ypred - y) * x))) 
    c_new <- c - learn_rate * ((1 / batch_size) * (sum(ypred - y))) 
     
    m <- m_new 
    c <- c_new 
ypred <- m * x + c
MSE_new <- sum((y - ypred) ^ 2) / batch_size

if(MSE - MSE_new <= conv_threshold) {
converged = T
return(paste("Iterations:",iterations,"Optimal intercept:", c, "Optimal slope:", m))
}
iterations = iterations + 1

if(iterations > max_iter) {
converged = T
return(paste("Iterations:",iterations,"Optimal intercept:", c, "Optimal slope:", m))
}
MSE = MSE_new
}
}
gradDesc(x = train_data$hp,y = train_data$mpg, learn_rate = 0.00003, conv_threshold = 1e-8, batch_size = 32, max_iter = 1500000)
主站蜘蛛池模板: 云林县| 封开县| 高雄市| 柘荣县| 安义县| 岫岩| 祁阳县| 孟村| 全南县| 西安市| 肇州县| 内乡县| 昭平县| 旺苍县| 大港区| 太和县| 天门市| 威宁| 淮滨县| 利辛县| 乳源| 永新县| 土默特左旗| 阳信县| 农安县| 沙田区| 剑河县| 安阳市| 涪陵区| 揭西县| 朝阳市| 新龙县| 收藏| 民县| 咸宁市| 五指山市| 永济市| 彭山县| 离岛区| 谢通门县| 三都|