官术网_书友最值得收藏!

One-vs-one

The alternative to one-vs-all is training a model for each pair of classes. The complexity is no longer linear (it's O(n2) indeed) and the right class is determined by a majority vote. In general, this choice is more expensive and should be adopted only when a full dataset comparison is not preferable.

If you want to learn more about multiclass strategies implemented by scikit-learn, visit 
http://scikit-learn.org/stable/modules/multiclass.html.
主站蜘蛛池模板: 博野县| 方城县| 盐源县| 定远县| 临沭县| 彰化县| 昌乐县| 莱芜市| 同心县| 汕头市| 砀山县| 岳阳市| 江津市| 桐乡市| 靖州| 襄垣县| 棋牌| 平罗县| 鄂托克旗| 彩票| 衡水市| 灵台县| 麻城市| 闸北区| 确山县| 高尔夫| 孟连| 咸丰县| 衡南县| 泾川县| 新干县| 泾源县| 灵武市| 井研县| 静海县| 郎溪县| 高淳县| 东港市| 涟源市| 闻喜县| 嘉荫县|