官术网_书友最值得收藏!

Predicate push-down on smart data sources

Smart data sources are those that support data processing directly in their own engine--where the data resides--by preventing unnecessary data to be sent to Apache Spark.

On example is a relational SQL database with a smart data source. Consider a table with three columns: column1, column2, and column3, where the third column contains a timestamp. In addition, consider an ApacheSparkSQL query using this JDBC data source but only accessing a subset of columns and rows based using projection and selection. The following SQL query is an example of such a task:

select column2,column3 from tab where column3>1418812500

Running on a smart data source, data locality is made use of by letting the SQL database do the filtering of rows based on timestamp and removal of column1.

Let's have a look at a practical example on how this is implemented in the Apache Spark MongoDB connector. First, we'll take a look at the class definition:

private[spark] case class MongoRelation(mongoRDD: MongoRDD[BsonDocument], _schema: Option[StructType])(@transient val sqlContext: SQLContext)
extends BaseRelation
with PrunedFilteredScan
with InsertableRelation
with LoggingTrait {

As you can see, the MongoRelation class extends BaseRelation. This is all that is needed to create a new plugin to the DataSource API in order to support an additional data source. However, this class also implemented the PrunedFilteredScan trait adding the buildScan method in order to support filtering on the data source itself. So let's take a look at the implementation of this method:

override def buildScan(requiredColumns: Array[String], filters: Array[Filter]): RDD[Row] = {
// Fields that explicitly aren't nullable must also be added to the filters
val pipelineFilters = schema
.fields
.filter(!_.nullable)
.map(_.name)
.map(IsNotNull)
++ filters

if (requiredColumns.nonEmpty || pipelineFilters.nonEmpty) {
logInfo(s"requiredColumns: ${requiredColumns.mkString(", ")},
filters: ${pipelineFilters.mkString(", ")}")
}
mongoRDD.appendPipeline(createPipeline(requiredColumns, pipelineFilters))
.map(doc => documentToRow(doc, schema, requiredColumns))
}

It is not necessary to understand the complete code snippet, but you can see that two parameters are passed to the buildScan method: requiredColumns and filters. This means that the code can use this information to remove columns and rows directly using the MongoDB API.

主站蜘蛛池模板: 兴安盟| 马鞍山市| 竹溪县| 南通市| 遵化市| 肥东县| 通江县| 南阳市| 宁都县| 大足县| 库车县| 正宁县| 合江县| 清新县| 河西区| 滕州市| 托克托县| 庄浪县| 钦州市| 乌苏市| 申扎县| 民丰县| 斗六市| 怀远县| 金堂县| 台南市| 平武县| 五原县| 循化| 新源县| 平昌县| 育儿| 九寨沟县| 石泉县| 额济纳旗| 花垣县| 丰城市| 华蓥市| 阳泉市| 阳春市| 色达县|