官术网_书友最值得收藏!

Processing JSON files

JavaScript Object Notation (JSON) is a data interchange format developed by the JavaScript ecosystem. It is a text-based format and has the same expressiveness such as, for instance, XML. The following example uses the SparkSession method called read.json to load the HDFS-based JSON data file named adult.json. This uses the so-called Apache Spark DataSource API to read and parse JSON files, but we will come back to that later.

val dframe = spark.read.json("hdfs:///data/spark/adult.json")

The result is a DataFrame.

Data can be saved in the JSON format using the DataSource API as well, as shown by the following example:

import spark.implicits._
val df = sc.parallelize(Array(1,2,3)).toDF
df.write.json("hdfs://localhost:9000/tmp/test.json")

So, the resulting data can be seen on HDFS; the Hadoop filesystem ls command shows you that the data resides in the target directory as a success file and eight part files. This is because even though small, the underlying RDD was set to have eight partitions, therefore those eight partitions have been written. This is shown in the following image:

What if we want to obtain a single file? This can be accomplished by repartition to a single partition:

val df1 =df.repartition(1)
df1.write.json("hdfs://localhost:9000/tmp/test_single_partition.json")

If we now have a look at the folder, it is a single file:

There are two important things to know. First, we still get the file wrapped in a subfolder, but this is not a problem as HDFS treats folders equal to files and as long as the containing files stick to the same format, there is no problem. So, if you refer to /tmp/test_single_partition.json, which is a folder, you can also use it similarly to a single file.

In addition, all files starting with _ are ignored. This brings us to the second point, the _SUCCESS file. This is a framework-independent way to tell users of that file that the job writing this file (or folder respectively) has been successfully completed. Using the Hadoop filesystem's cat command, it is possible to display the contents of the JSON data:

If you want to dive more into partitioning and what it means when using it in conjunction with HDFS, it is recommended that you start with the following discussion thread on StackOverflow:
http://stackoverflow.com/questions/10666488/what-are-success-and-part-r-00000-files-in-hadoop.

Processing Parquet data is very similar, as we will see next.

主站蜘蛛池模板: 东丽区| 策勒县| 陆川县| 蓝山县| 惠州市| 保定市| 西乌| 合山市| 湖州市| 荔波县| 汝城县| 平邑县| 石台县| 吉木乃县| 永清县| 墨脱县| 招远市| 龙井市| 甘谷县| 玉田县| 耿马| 滨州市| 丘北县| 通榆县| 靖宇县| 祁东县| 基隆市| 海伦市| 修文县| 太保市| 富锦市| 武汉市| 渝中区| 彩票| 南城县| 山阳县| 沁源县| 新郑市| 漯河市| 宝坻区| 商南县|