書名: R Deep Learning Cookbook作者名: Dr. PKS Prakash Achyutuni Sri Krishna Rao本章字?jǐn)?shù): 121字更新時間: 2021-07-02 20:49:17
Convolution Neural Network
In this chapter, we will cover the following topics:
- Downloading and configuring an image dataset
- Learning the architecture of a CNN classifier
- Using functions to initialize weights and biases
- Using functions to create a new convolution layer
- Using functions to flatten the densely connected layer
- Defining placeholder variables
- Creating the first convolution layer
- Creating the second convolution layer
- Flattening the second convolution layer
- Creating the first fully connected layer
- Applying dropout to the first fully connected layer
- Creating the second fully connected layer with dropout
- Applying softmax activation to obtain a predicted class
- Defining the cost function used for optimization
- Performing gradient descent cost optimization
- Executing the graph in a TensorFlow session
- Evaluating the performance on test data
推薦閱讀
- The DevOps 2.3 Toolkit
- Android和PHP開發(fā)最佳實踐(第2版)
- 測試驅(qū)動開發(fā):入門、實戰(zhàn)與進(jìn)階
- 兩周自制腳本語言
- PaaS程序設(shè)計
- Mastering QGIS
- 華為HMS生態(tài)與應(yīng)用開發(fā)實戰(zhàn)
- 我的第一本算法書
- Practical DevOps
- UI智能化與前端智能化:工程技術(shù)、實現(xiàn)方法與編程思想
- Kotlin編程實戰(zhàn):創(chuàng)建優(yōu)雅、富于表現(xiàn)力和高性能的JVM與Android應(yīng)用程序
- Visual C#.NET Web應(yīng)用程序設(shè)計
- Java Web從入門到精通(第3版)
- Zabbix Performance Tuning
- 石墨烯改性塑料