官术网_书友最值得收藏!

Convolution Neural Network

In this chapter, we will cover the following topics:

  • Downloading and configuring an image dataset
  • Learning the architecture of a CNN classifier
  • Using functions to initialize weights and biases
  • Using functions to create a new convolution layer
  • Using functions to flatten the densely connected layer
  • Defining placeholder variables
  • Creating the first convolution layer
  • Creating the second convolution layer
  • Flattening the second convolution layer
  • Creating the first fully connected layer
  • Applying dropout to the first fully connected layer
  • Creating the second fully connected layer with dropout
  • Applying softmax activation to obtain a predicted class
  • Defining the cost function used for optimization
  • Performing gradient descent cost optimization
  • Executing the graph in a TensorFlow session
  • Evaluating the performance on test data
主站蜘蛛池模板: 宁城县| 梨树县| 东乌珠穆沁旗| 安平县| 甘南县| 乌兰察布市| 宁远县| 韶关市| 沅陵县| 乌海市| 安塞县| 宁河县| 华阴市| 柳江县| 桐庐县| 玛曲县| 马公市| 舞阳县| 佛教| 武定县| 双辽市| 郓城县| 米泉市| 正蓝旗| 渝中区| 南昌市| 钦州市| 丰都县| 滦平县| 常宁市| 牟定县| 聊城市| 祁阳县| 瑞金市| 康定县| 阿瓦提县| 凌海市| 德清县| 响水县| 永嘉县| 天镇县|