- R Deep Learning Cookbook
- Dr. PKS Prakash Achyutuni Sri Krishna Rao
- 100字
- 2021-07-02 20:49:17
How it works...
The performance of the model can be evaluated using AUC:
# Performance on Train
library(pROC)
ypred <- sess$run(tf$nn$sigmoid(multilayer_perceptron(x, weights, biases)))
roc_obj <- roc(occupancy_train[, yFeatures], as.numeric(ypred))
# Performance on Test
nRowt<-nrow(occupancy_test)
xt <- tf$constant(unlist(occupancy_test[, xFeatures]), shape=c(nRowt, nFeatures), dtype=np$float32) #
ypredt <- sess$run(tf$nn$sigmoid(multilayer_perceptron(xt, weights, biases)))
roc_objt <- roc(occupancy_test[, yFeatures], as.numeric(ypredt))
AUC can be visualized using the plot.auc function from the pROC package, as shown in the image following the next command. The performance of train and test (hold out) is very similar.
plot.roc(roc_obj, col = "green", lty=2, lwd=2)
plot.roc(roc_objt, add=T, col="red", lty=4, lwd=2)

Performance of multilayer perceptron using TensorFlow
推薦閱讀
- Mastering JavaScript Object-Oriented Programming
- Moodle Administration Essentials
- JIRA 7 Administration Cookbook(Second Edition)
- Learning Zurb Foundation
- Java系統化項目開發教程
- Mastering openFrameworks:Creative Coding Demystified
- Python從入門到精通
- Extending Unity with Editor Scripting
- 軟件測試(慕課版)
- CryENGINE Game Programming with C++,C#,and Lua
- Java程序設計
- Java面試一戰到底(基礎卷)
- Jenkins 2.x Continuous Integration Cookbook(Third Edition)
- Practical XMPP
- Visual C++實用教程