- R Deep Learning Cookbook
- Dr. PKS Prakash Achyutuni Sri Krishna Rao
- 100字
- 2021-07-02 20:49:17
How it works...
The performance of the model can be evaluated using AUC:
# Performance on Train
library(pROC)
ypred <- sess$run(tf$nn$sigmoid(multilayer_perceptron(x, weights, biases)))
roc_obj <- roc(occupancy_train[, yFeatures], as.numeric(ypred))
# Performance on Test
nRowt<-nrow(occupancy_test)
xt <- tf$constant(unlist(occupancy_test[, xFeatures]), shape=c(nRowt, nFeatures), dtype=np$float32) #
ypredt <- sess$run(tf$nn$sigmoid(multilayer_perceptron(xt, weights, biases)))
roc_objt <- roc(occupancy_test[, yFeatures], as.numeric(ypredt))
AUC can be visualized using the plot.auc function from the pROC package, as shown in the image following the next command. The performance of train and test (hold out) is very similar.
plot.roc(roc_obj, col = "green", lty=2, lwd=2)
plot.roc(roc_objt, add=T, col="red", lty=4, lwd=2)

Performance of multilayer perceptron using TensorFlow
推薦閱讀
- SpringMVC+MyBatis快速開(kāi)發(fā)與項(xiàng)目實(shí)戰(zhàn)
- 從程序員到架構(gòu)師:大數(shù)據(jù)量、緩存、高并發(fā)、微服務(wù)、多團(tuán)隊(duì)協(xié)同等核心場(chǎng)景實(shí)戰(zhàn)
- Java面向?qū)ο蟪绦蜷_(kāi)發(fā)及實(shí)戰(zhàn)
- 64位匯編語(yǔ)言的編程藝術(shù)
- Learning Data Mining with R
- PhoneGap:Beginner's Guide(Third Edition)
- SQL經(jīng)典實(shí)例(第2版)
- 計(jì)算機(jī)應(yīng)用基礎(chǔ)案例教程
- Hadoop大數(shù)據(jù)分析技術(shù)
- Arduino機(jī)器人系統(tǒng)設(shè)計(jì)及開(kāi)發(fā)
- ASP.NET開(kāi)發(fā)寶典
- Building a Media Center with Raspberry Pi
- Python深度學(xué)習(xí):基于PyTorch
- LiveCode Mobile Development Hotshot
- 數(shù)據(jù)結(jié)構(gòu):Python語(yǔ)言描述