- R Deep Learning Cookbook
- Dr. PKS Prakash Achyutuni Sri Krishna Rao
- 100字
- 2021-07-02 20:49:17
How it works...
The performance of the model can be evaluated using AUC:
# Performance on Train
library(pROC)
ypred <- sess$run(tf$nn$sigmoid(multilayer_perceptron(x, weights, biases)))
roc_obj <- roc(occupancy_train[, yFeatures], as.numeric(ypred))
# Performance on Test
nRowt<-nrow(occupancy_test)
xt <- tf$constant(unlist(occupancy_test[, xFeatures]), shape=c(nRowt, nFeatures), dtype=np$float32) #
ypredt <- sess$run(tf$nn$sigmoid(multilayer_perceptron(xt, weights, biases)))
roc_objt <- roc(occupancy_test[, yFeatures], as.numeric(ypredt))
AUC can be visualized using the plot.auc function from the pROC package, as shown in the image following the next command. The performance of train and test (hold out) is very similar.
plot.roc(roc_obj, col = "green", lty=2, lwd=2)
plot.roc(roc_objt, add=T, col="red", lty=4, lwd=2)

Performance of multilayer perceptron using TensorFlow
推薦閱讀
- Docker and Kubernetes for Java Developers
- 編程的修煉
- Visual Basic程序開發(學習筆記)
- Web Application Development with R Using Shiny(Second Edition)
- JavaScript動態網頁開發詳解
- 你不知道的JavaScript(中卷)
- Vue.js 2 Web Development Projects
- Go語言開發實戰(慕課版)
- Visual Basic程序設計全程指南
- Building Business Websites with Squarespace 7(Second Edition)
- PhoneGap 4 Mobile Application Development Cookbook
- ROS機器人編程實戰
- 3ds Max 2018從入門到精通
- Visual FoxPro程序設計實驗教程
- Cloud Development andDeployment with CloudBees